References
- Abdur Rani, M. F. and Rusli, N. (2017). The Accuracy Assessment of Agisoft Photoscan and Pix4D Mapper Software in Orthophoto Production. In Geomatics Research Innovation Competition (GRIC), volume 1, pages 1–4.
- Ajayi, O. G. and Palmer, M. (2020). Modelling 3D Topography by comparing airborne LiDAR data with Unmanned Aerial System (UAS) photogrammetry under multiple imaging conditions. Geoplanning: Journal of Geomatics and Planning, 6(2):123–138, doi:10.14710/geoplanning.6.2.122–138.
- Ajayi, O. G., Palmer, M., and Salubi, A. A. (2018). Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment, 11:220–230, doi:10.1016/j.rsase.2018.07.007.
- Ajeeth, C. (2015). Aerial 3D imaging and Monitoring of quarries with small drones. An article presented at United Arab Emirate Ministry of Environment and water. Retrieved form https://fnrc.gov.ae/forum/present/2015/45.pdf.
- Akgul, M., Yurtseven, H., Gulci, S., and Akay, A. E. (2018). Evaluation of UAV-and GNSS-based DEMs for earthwork volume. Arabian Journal for Science and Engineering, 43(4):1893–1909, doi:10.1007/s13369-017-2811-9.
- Alidoost, F. and Arefi, H. (2017). Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, IV-4/W4:55–61, doi:10.5194/isprs-annals-IV-4-W4-55-2017.
- Argese, F., Erriquez, G., Galeandro, A., Giraldo, M. S., Imperiale, M. G., Scarano, M., Specchiarello, A. R., Tarantino, E., and Turso, A. (2019). A procedure for automating earthwork computations using UAV photogrammetry and open-source software. AIP Conference Proceedings, 2116(1):280008, doi:10.1063/1.5114291.
- Bahuguna, P., Dheeraj, K., and K., S. (2006). Modern survey instruments and their use in mine surveying. In Proceedings of the Indian Conference on Mine Surveying (ICMS-2006), September 8–9, 2006, Indian School of Mines (ISM), Shanbad, Jharkhand, India, pages 95–112.
- Bater, C. W. and Coops, N. C. (2009). Evaluating error associated with lidar-derived DEM interpolation. Computers & Geosciences, 35(2):289–300.
- Dastgheibifard, S. and Asnafi, M. (2018). A review on potential applications of unmanned aerial vehicle for construction industry. Sustainable Structure and Materials, 1(2):44–53, doi:10.26392/SSM.2018.01.02.044.
- DJI (n.d.). DJI Phantom 4-Specs, FAQ, Tutorials and downloads. Retrieved from https://www.dji.com/mobile/phantom-4/info.
- Gupta, S. G., Ghonge, D., Jawandhiya, P. M., et al. (2013). Review of unmanned aircraft system (UAS). International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume, 2(4):1646–1658.
- Harwin, S. and Lucieer, A. (2012). Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6):1573–1599, doi:10.3390/rs4061573.
- Hirayama, N., Kawata, Y., Suzuki, S., and Harada, K. (2009). Estimation procedure for potential quantity of tsunami debris on tsunami earthquake disasters.
- Kuta, A. A., Ajayi, O. G., Osunde, T. J., Ibrahim, P. O., Dada, D. O., and Awwal, A. A. (2018). Investigation of the robustness of different contour interpolation models for the generation of contour map and digital elevation models. pages 1527–1541.
- Martin, K. (2016). Assessing the Accuracy of Stockpile Volumes Obtained Through Aerial Surveying – Case Study. Retrieved from https://connexicore.com/wp-content/uploads/2018/08/stock_pile_volumes_case_study.pdf.
- Mohammed, A. I. and Abdulrahman, F. H. (2020). Evaluation of UAV-based DEM for volume calculation. Journal of Duhok University, 23(1):11–24, doi:10.26682/sjuod.2020.23.1.2.
- Napoles, E. and Berber, M. (2018). Precise formula for volume computations using contours method. Boletim de Ciências Geodésicas, 24(1):18–27, doi:10.1590/S1982-21702018000100002.
- Nguyen, Q. L., Bui, X.-N., Cao, X. C., and Le, V. C. (2019). An approach of mapping quarries in Vietnam using low-cost Unmanned Aerial Vehicles. In»ynieria Mineralna (Journal of the Polish Mineral Engineering Society), 21:248–262, doi:10.29227/IM-2019-02-79.
- Pix4D Support (2020). How to improve the outputs of dense vegetation areas? Retrieved from https://support.pix4d.com/hc/en-us/articles/202560159-How-to-improve-the-outputs-of-dense-vegetation-areas.
- Propeller (2018). How stockpile volume measurement works in drone surveying with propeller. Retrieved from https://www.propelleraero.com/blog/how-stockpile-volume-measurement-works-in-drone-surveying/.
- Raeva, P., Filipova, S., and Filipov, D. (2016). Volume computation of a stockpile – a study case comparing gps and uav measurements in an open pit quarry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B1):12–19, doi:10.5194/isprsarchives-XLI-B1-999-2016. XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.
- Rahman, A. A. A., Maulud, K. N. A., Mohd, F. A., Jaafar, O., and Tahar, K. N. (2017). Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach. IOP Conference Series: Materials Science and Engineering, 270:012032, doi:10.1088/1757-899x/270/1/012032.
- Suziedelyte Visockiene, J., Brucas, D., and Ragauskas, U. (2014). Comparison of UAV images processing softwares. Journal of Measurements in Engineering, 2(2):111–121.
- Tan, Q. and Xu, X. (2014). Comparative analysis of spatial interpolation methods: an experimental study. Sensors & Transducers, 165(2):155–163.
- Yoo, H. T., Lee, H., Chi, S., Hwang, B.-G., and Kim, J. (2017). A Preliminary Study on Disaster Waste Detection and Volume Estimation Based on 3D Spatial Information, pages 428–435. doi:10.1061/9780784480823.051.
- Zylka, A. (2014). Small Unmanned Aerial Systems (sUAS) for Volume Estimation. UVM Honors College Senior Theses. Paper 44.
