References
- Brown, J. (2011). ZBar bar code reader. Retrieved from http://zbar.sourceforge.net/index.html/.
- Germanese, D., Leone, G., Moroni, D., Pascali, M., and Tampucci, M. (2018). Long-Term Monitoring of Crack Patterns in Historic Structures Using UAVs and Planar Markers: A Preliminary Study. Journal of Imaging, 4(8):99, doi:10.3390/jimaging4080099.
- Germaniuk, K. (2007). Zalecenia dotyczące doboru mostowych urządzeń dylatacyjnych oraz ich wbudowywania i odbioru. INSTYTUT BADAWCZY DRÓG I MOSTÓW, Warsaw.
- Hager, W. W. and Zhang, H. (2006). A survey of nonlinear conjugate gradient methods. Pacific journal of Optimization, 2(1):35–58.
- Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems’. Journal of Research of the National Bureau of Standards, 49(6):409–436, doi:10.6028/jres.049.044.
- Jahanshahi, M., Masri, S., Padgett, C., and Sukhatme, G. (2013). An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Machine Vision and Applications, 24(2):227–241, doi:0.1007/s00138-011-0394-0.
- Łakomy, T. (2018). Diagnostyka i naprawa konstrukcji budowlanych [Diagnostics and maintanance of construction]. Retrieved from http://korbet.pl/ocena-rys-wykrywanie-wad-wewnetrznych-w-konstrukcji/.
- Nishiyama, S., Minakata, N., Kikuchi, T., and Yano, T. (2015). Improved digital photogrammetry technique for crack monitoring. Advanced Engineering Informatics, 29(4):851–858, doi:10.1016/j.aei.2015.05.005.
- OpenCV (2018). Open Source Computer Vision Library. Retrieved from https://docs.opencv.org/4.0.0.
- Strehl, A. and Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3(3):583–617.
- Valença, J., da Costa, D. D., Júlio, E., Araújo, H., and Costa, H. (2013). Automatic crack monitoring using photogrammetry and image processing. Measurement, 46(1):433–441, doi:10.1016/j.measurement.2012.07.019.
