References
- Agisoft (2017). Photoscan Professional Version 1.3.2.4205.
- Ahmadabadian, A. H., Robson, S., Boehm, J., and Shortis, M. (2014). Stereo-imaging network design for preciseand dense 3D reconstruction. The Photogrammetric Record 29(147):317–336,10.1111/phor.12076
- Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., and Fritsch, D. (2013). A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing 78:157–167,10.1016/j.isprsjprs.2013.01.015
- Aicardi, I., Chiabrando, F., Lingua, A. M., and Noardo, F. (2018). Recent trends in cultural heritage 3D survey: The photogrammetric computer vision approach. Journal of Cultural Heritage 32:257–266,10.1016/j.culher.2017.11.006
- Al-Rawabdeh, A., Moussa, A., Foroutan, M., El-Sheimy, N., and Habib, A. (2017). Time series UAV image-based point clouds for landslide progression evaluation applications. Sensors 17(10):2378,10.3390/s17102378
- Ali-Sisto, D. and Packalen, P. (2017). Forest change detection by using point clouds from dense image matching together with a LIDAR-derived terrain model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(3):1197–1206,10.1109/JSTARS.2016.2615099
- Alsadik, B., Gerke, M., and Vosselman, G. (2013). Automated camera network design for 3D modeling of cultural heritage objects. Journal of Cultural Heritage 14(6):515–526,10.1016/j.culher.2012.11.007
- Altan, O., Toz, G., Kulur, S., Seker, D., Volz, S., Fritsch, D., and Sester, M. (2001). Photogrammetry and geographic information systems for quick assessment, documentation and analysis of earthquakes. ISPRS Journal of Photogrammetry and Remote Sensing 55(5-6):359–372,10.1016/S0924-2716(01)00025-9
- Altuntas, C. (2013). Keypoint based automatic image orientation and skew investigation on tie points. Kybernetes 42(3):506–520,10.1108/03684921311323725
- Altuntas, C. (2014). The effect of point density on the registration accuracy of a terrestrial laser scanning dataset. Lasers in Engineering 28(3-4):213–221.
- Awrangjeb, M., Fraser, C. S., and Lu, G. (2015). Building change detection from LIDAR point cloud data based on connected component analysis. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-3/W5:393–400,10.5194/isprsannals-II-3-W5-393-2015
- Barazzetti, L., Scaioni, M., and Remondino, F. (2010). Orientation and 3D modelling from markerless terrestrial images: combining accuracy with automation. The Photogrammetric Record 25(132):356–381,10.1111/j.1477-9730.2010.00599.x
- Barnhart, T. and Crosby, B. (2013). Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sensing 5(6):2813–2837,10.3390/rs5062813
- Basgall, P. L., Kruse, F. A., and Olsen, R. C. (2014). Comparison of LIDAR and stereo photogrammetric point clouds for change detection. In Laser Radar Technology and Applications XIX; and Atmospheric Propagation XI volume 9080R. International Society for Optics and Photonics.
- Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded up robust features. In Leonardis, A., Bischof, H., and Pinz, A., editors, Computer Vision – ECCV 2006 pages 404–417. Springer.
- Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures volume 1611, pages 586–607. International Society for Optics and Photonics.
- Bildirici, O. I., Ustun, A., Selvi, Z. H., Abbak, A. R., and Bugdayci, I. (2009). Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. Cartography and Geographic Information Science 36(1):95–104,10.1559/152304009787340205
- Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: Binary robust independent elementary features. In Daniilidis, K., Maragos, P., and Paragios, N., editors, "Computer Vision – ECCV 2010 pages 778–792. Springer.
- Chen, B., Chen, Z., Deng, L., Duan, Y., and Zhou, J. (2016). Building change detection with RGB-D map generated from UAV images. Neurocomputing 208:350–364,10.1016/j.neucom.2015.11.118
- Cooper, M. A. R. and Robson, S. (1990). High precision photogrammetric monitoring of the deformation of a steel bridge. The Photogrammetric Record 13(76):505–510,10.1111/j.1477-9730.1990.tb00712.x
- Cusicanqui, J. (2016). 3D scene reconstruction and structural damage assessment with aerial video frames and drone still imagery. Master’s thesis, University of Twente.
- Di, K., Xu, F., Wang, J., Agarwal, S., Brodyagina, E., Li, R., and Matthies, L. (2008). Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission. ISPRS Journal of Photogrammetry and Remote Sensing 63(2):181–201,10.1016/j.isprsjprs.2007.07.007
- Du, S., Zhang, Y., Qin, R., Yang, Z., Zou, Z., Tang, Y., and Fan, C. (2016). Building change detection using old aerial images and new LIDAR data. Remote Sensing 8(12):1030,10.3390/rs8121030
- Fraser, C., Hanley, H., and Cronk, S. (2005). Close-range photogrammetry for accident reconstruction. In Gruen, A. and Kahmen, H., editors, Optical 3D Measurements VII volume II, pages 115–123.
- Gabrlik, P. (2015). The use of direct georeferencing in aerial photogrammetry with micro UAV. IFAC-PapersOnLine 48(4):380–385,10.1016/j.ifacol.2015.07.064
- Ghuffar, S., Székely, B., Roncat, A., and Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LIDAR data. Remote Sensing 5(6):2720–2745,10.3390/rs5062720
- Haala, N. (2011). Multiray photogrammetry and dense image matching. In Fritsch, D., editor, Photogrammetric Week volume 11, pages 185–195.
- Haala, N. and Rothermel, M. (2012). Dense multiple stereo matching of highly overlapping UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B1:387–392,10.5194/isprsarchives-XXXIX-B1-387-2012
- Hartley, R. and Zisserman, A. (2003). Multiple view geometry in computer vision Cambridge University Press.
- Hebel, M., Arens, M., and Stilla, U. (2013). Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data. ISPRS Journal of Photogrammetry and Remote Sensing 86:52–64,10.1016/j.isprsjprs.2013.09.005
- Honkavaara, E., Markelin, L., Rosnell, T., and Nurminen, K. (2012). Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry. IS-PRS Journal of Photogrammetry and Remote Sensing 67:13–26,10.1016/j.isprsjprs.2011.10.001
- Hughes, M. L., McDowell, P. F., and Marcus, W. A. (2006). Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74(1-4):1–16,10.1016/j.geomorph.2005.07.001
- James, M. R., Robson, S., and Smith, M. W. (2017). 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surface Processes and Landforms 42(12):1769–1788,10.1002/esp.4125
- Jensen, J. and Mathews, A. (2016). Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sensing 8(1):50,10.3390/rs8010050
- Jiang, R., Jáuregui, D. V., and White, K. R. (2008). Close-range photogrammetry applications in bridge measurement: literature review. Measurement 41(8):823–834,10.1016/j.measurement.2007.12.005
- Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., and Wiechert, A. (2010). Point clouds: LIDAR versus 3D vision. Photogrammetric Engineering & Remote Sensing 76(10):1123–1134,10.14358/PERS.76.10.1123
- Lingua, A., Piumatti, P., and Rinaudo, F. (2003). Digital photogrammetry: a standard approach to cultural heritage survey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34(5/W12):210–215.
- Lovitt, J., Rahman, M. M., and McDermid, G. J. (2017). Assessing the value of UAV photogrammetry for characterizing terrain in complex peatlands. Remote Sensing 9(7):715,10.3390/rs9070715
- Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision 60(2):91–110,10.1023/B:VISI.0000029664.99615.94
- Mora, O. E., Lenzano, M. G., Toth, C. K., Grejner-Brzezinska, D., and Fayne, J. V. (2018). Landslide change detection based on multi-temporal airborne LIDAR-derived DEMs. Geo-sciences 8(1):23,10.3390/geosciences8010023
- Nebiker, S., Lack, N., and Deuber, M. (2014). Building change detection from historical aerial photographs using dense image matching and object-based image analysis. Remote Sensing 6(9):8310–8336,10.3390/rs6098310
- Pang, S., Hu, X., Cai, Z., Gong, J., and Zhang, M. (2018). Building change detection from bi-temporal dense-matching point clouds and aerial images. Sensors 18(4):966,10.3390/s18040966
- Pfeifer, N., Glira, P., and Briese, C. (2012). Direct georeferencing with on board navigation components of light weight UAV platforms. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39(B7):487–492,10.5194/isprsarchives-XXXIX-B7-487-2012
- Remondino, F., Spera, M. G., Nocerino, E., Menna, F., Nex, F., and Gonizzi-Barsanti, S. (2013). Dense image matching: comparisons and analyses. In 2013 Digital Heritage International Congress (DigitalHeritage) volume 1, pages 47–54. IEEE.
- Rosnell, T. and Honkavaara, E. (2012). Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12(1):453–480,10.3390/s120100453
- Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., and Capra, A. (2017). Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. European Journal of Remote Sensing 50(1):211–221,10.1080/22797254.2017.1313097
- Scaioni, M., Roncella, R., and Alba, M. I. (2013). Change detection and deformation analysis in point clouds: Application to rock face monitoring. Photogrammetric Engineering & Remote Sensing 79(5):441–455,10.14358/PERS.79.5.441
- Stumpf, A., Malet, J.-P., Allemand, P., Pierrot-Deseilligny, M., and Skupinski, G. (2015). Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130–145,10.1016/j.geomorph.2014.10.039
- Tran, T. H. G., Ressl, C., and Pfeifer, N. (2018). Integrated change detection and classification in urban areas based on airborne laser scanning point clouds. Sensors 18(2):448,10.3390/s18020448
- Vu, T. T., Matsuoka, M., and Yamazaki, F. (2004). LIDAR-based change detection of buildings in dense urban areas. In IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium volume 5, pages 3413–3416. IEEE.
- Xiao, W., Vallet, B., Brédif, M., and Paparoditis, N. (2015). Street environment change detection from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 107:38–49,10.1016/j.isprsjprs.2015.04.011
- Yang, M.-D., Chao, C.-F., Huang, K.-S., Lu, L.-Y., and Chen, Y.-P. (2013). Image-based 3D scene reconstruction and exploration in augmented reality. Automation in Construction 33:48–60,10.1016/j.autcon.2012.09.017
- Yu, G. and Morel, J.-M. (2011). ASIFT: An algorithm for fully affine invariant comparison. Image Processing On Line 1:11–38,10.5201/ipol.2011.my-asift
- Zhang, X., Glennie, C., and Kusari, A. (2015). Change detection from differential airborne LIDAR using a weighted anisotropic iterative closest point algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(7):3338–3346,10.1109/JSTARS.2015.2398317
- Zhang, Z., Gerke, M., Vosselman, G., and Yang, M. Y. (2018). A patch-based method for the evaluation of dense image matching quality. International journal of applied earth observation and geoinformation 70:25–34,10.1016/j.jag.2018.04.002
