Have a personal or library account? Click to login
Detecting Abandoned Houses in Rural Areas using Multi-Source Data Cover

Detecting Abandoned Houses in Rural Areas using Multi-Source Data

By: Changro Lee  
Open Access
|Sep 2023

References

  1. Baba, H., & Hino, K. (2019). Factors and tendencies of housing abandonment: An analysis of a survey of vacant houses in Kawaguchi City. Japan Architectural Review, 2(3), 367–375. https://doi.org/10.1002/2475-8876.12088
  2. Deng, C., & Ma, J. (2015). Viewing urban decay from the sky: A multi-scale analysis of residential vacancy in a shrinking US city. Landscape and Urban Planning, 141, 88–99. https://doi.org/10.1016/j.landurbplan.2015.05.002
  3. Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li., & Li Fei-Fei. (2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). IEEE. https://doi.org/10.1109/CVPR.2009.5206848
  4. Döringer, S., Uchiyama, Y., Penker, M., & Kohsaka, R. (2020). A metaanalysis of shrinking cities in Europe and Japan. Towards an integrative research agenda. European Planning Studies, 28(9), 1693–1712. https://doi.org/10.1080/09654313.2019.1604635
  5. Du, M., Wang, L., Zou, S., & Shi, C. (2018). Modeling the census tract level housing vacancy rate with the Jilin1-03 satellite and other geospatial data. Remote Sensing (Basel), 10(12), 1920. https://doi.org/10.3390/rs10121920
  6. Ganning, J. P., & Tighe, J. R. (2021). Moving toward a shared understanding of the US shrinking city. Journal of Planning Education and Research, 41(2), 188–201. https://doi.org/10.1177/0739456X18772074
  7. Ghosh, S., Byahut, S., & Masilela, C. (2019). Metropolitan regional scale smart city approaches in a Shrinking city in the American rust belt—case of Pittsburgh, Pennsylvania. In Smart Metropolitan Regional Development, pp. 979–1021. Springer. https://doi.org/10.1007/978-981-10-8588-8_17
  8. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
  9. Kang, J., Körner, M., Wang, Y., Taubenböck, H., & Zhu, X. X. (2018). Building instance classification using street view images. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 44–59. https://doi.org/10.1016/j.isprsjprs.2018.02.006
  10. Kelly, J., Gross, A., & Lassar, B. (2016). Abandoned housing strategies 101. Vital Neighborhoods Consulting, LLC.
  11. Kim, J. H., & Nam, J. (2016). A study on vacant house distribution and management of urban declining age. Journal of the Korea Regional Science Association, 32(1), 105–122.
  12. KOSIS. (2022a). Population and households, Korean Statistical Information Service, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B040A3
  13. KOSIS. (2022b). Type and volume of vacant houses. Korean Statistical Information Service, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1JU1512
  14. Kumagai, K., Matsuda, Y., & Ono, Y. (2016). Estimation of housing vacancy distributions: Basic Bayesian approach using utility data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI, 709–713. https://doi.org/10.5194/isprs-archives-XLI-B2-709-2016
  15. Law, S., Seresinhe, C. I., Shen, Y., & Gutierrez-Roig, M. (2020). Street-Frontage-Net: Urban image classification using deep convolutional neural networks. International Journal of Geographical Information Science, 34(4), 681–707. https://doi.org/10.1080/13658816.2018.1555832
  16. Lee, C., & Park, K. H. (2020). Using photographs and metadata to estimate house prices in South Korea. Data Technologies and Applications.
  17. Lee, J. E., & Joo, P. J. (2022). A study on changes in spatial characteristics of vacant houses in Sejong City. Journal of the Korean Urban Management Association, 35(1), 49–62. https://doi.org/10.36700/KRUMA.2022.3.35.1.49
  18. Mallach, A. (2018). The empty house next door. Lincoln Institute of Land Policy.
  19. Morckel, V. C. (2014). Spatial characteristics of housing abandonment. Applied Geography (Sevenoaks, England), 48, 8–16. https://doi.org/10.1016/j.apgeog.2014.01.001
  20. Mukkamala, M. C., & Hein, M. (2017). Variants of rmsprop and adagrad with logarithmic regret bounds. In International conference on machine learning, 2545-2553. PMLR.
  21. Oh, G. S., & Kim, G. H. (2022). An impact of local industrial structure and population movement on an increase in vacant houses. Journal of the Korean Urban Management Association, 35(3), 49–77. https://doi.org/10.36700/KRUMA.2022.9.35.3.49
  22. Ortiz-Moya, F. (2015). Coping with shrinkage: Rebranding postindustrial Manchester. Sustainable Cities and Society, 15, 33–41. https://doi.org/10.1016/j.scs.2014.11.004
  23. Pallagst, K. (2009). Shrinking cities in the United States of America. The Future of Shrinking Cities: Problems, Patterns and Strategies of Urban Transformation in a Global Context. University of California.
  24. Rink, D., Haase, A., Grossmann, K., Couch, C., & Cocks, M. (2012). From long-term shrinkage to re-growth? The urban development trajectories of Liverpool and Leipzig. Built Environment, 38(2), 162–178. https://doi.org/10.2148/benv.38.2.162
  25. Sakamoto, K., Iida, A., & Yokohari, M. (2017). Spatial Emerging Patterns of Vacant Land in a Japanese City Experiencing Urban Shrinkage A Case Study of Tottori City. Urban and Regional Planning Review, 4, 111–128. https://doi.org/10.14398/urpr.4.111
  26. Wiechmann, T., & Pallagst, K. M. (2012). Urban shrinkage in Germany and the USA: A comparison of transformation patterns and local strategies. International Journal of Urban and Regional Research, 36(2), 261–280. https://doi.org/10.1111/j.1468-2427.2011.01095.x PMID:22518884
  27. Yin, L., & Silverman, R. M. (2015). Housing abandonment and demolition: Exploring the use of micro-level and multi-year models. ISPRS International Journal of Geo-Information, 4(3), 1184–1200. https://doi.org/10.3390/ijgi4031184
  28. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009 PMID:28692961
  29. Zou, S., & Wang, L. (2020). Individual vacant house detection in very-high-resolution remote sensing images. Annals of the Association of American Geographers, 110(2), 449–461.
  30. Zou, S., & Wang, L. (2021). Detecting individual abandoned houses from google street view: A hierarchical deep learning approach. ISPRS Journal of Photogrammetry and Remote Sensing, 175, 298–310. https://doi.org/10.1016/j.isprsjprs.2021.03.020
Language: English
Page range: 58 - 66
Published on: Sep 7, 2023
Published by: Real Estate Management and Valuation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Changro Lee, published by Real Estate Management and Valuation
This work is licensed under the Creative Commons Attribution 4.0 License.