References
- Braun, V., & Clarke, V. (2022). Thematic analysis: A practical guide. California, USA: Sage.
- Buolamwini, J., & Gebru, T. (2023). Intersectional AI: Understanding and addressing the social impacts of artificial intelligence. AI & Society, 38(2), 1-12.
- Baylor, A. L. (2019). The impact of pedagogical agent gesturing in multimedia learning environments: A meta-analysis. Educational Research Review, 28, 100283.
- Chen, L., & Santos, R. (2023). Multidimensional Evaluation of Educational AI Systems. Computers & Education, 185, 104521.
- Clark, R. E., & Mayer, R. E. (2016). E-learning and the science of instruction. New Jersey, USA: Wiley.
- Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., & Tong, X. (2023). Accurate 3D face reconstruction with weakly- supervised learning: From single image to image set. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 346-360.
- Gomes, P., et al. (2023). Cultural Adaptation of Educational Avatars. Journal of Educational Technology Systems, 51(2), 145-167.
- Johnson, W. L., & Lester, J. C. (2016). Face-to-face with a computer tutor: Humanizing the interface for learning. IEEE Computer, 49(9), 24-33.
- Johnson, W. L., & Lester, J. C. (2021). Digital human pedagogical agents to support learning. International Journal of Artificial Intelligence in Education, 31(4), 723-755.
- Kärkkäinen, K., & Joo, J. (2021). FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age. arXiv preprint arXiv:1908.04913.
- Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 10(1), 18-31.
- Nwanze, L., & Feiner, S. (2024). Thresholds of Adoption for Educational AI in Low-Resource Settings. Computers & Education, 188, 104832.
- Ortega, J., et al. (2024). Decentralized Co-Design of Educational AI Systems. International Journal of Artificial Intelligence in Education, 34(1), 45-78.
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1-11.
- Reed, D. A., Cook, D. A., Beckman, T. J., Levine, R. B., Kern, D. E., & Wright, S. M. (2022). Association between funding and quality of published medical education research. JAMA, 298(9), 1002-1009.
- Ruiz, N., Liu, Y., Jourabloo, A., & Cheng, Y. (2023). Learning bias-invariant facial representations for domain generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), 3723-3736.
- Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., & Norouzi, M. (2022). Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 1485-1497.
- Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695-729.
- Short, J., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. New Jersey, USA: Wiley.
- Sweller, J. (2011). Cognitive load theory. In Psychology of Learning and Motivation (Vol. 55, pp. 37-76). USA: Academic Press.
- Zhang, Y., Zhang, H., Cun, X., Shen, X., Guo, Y., Shan, Y., & Wang, F. (2023). A survey of facial animation generation and editing with deep learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5591-5610.
- Zhou, B., et al. (2022). Learning to Balance - Bias Mitigation in Facial Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 1125-1138.