Have a personal or library account? Click to login
Between defence and delivery: the DNA sensing response to gene electrotransfer Cover

Between defence and delivery: the DNA sensing response to gene electrotransfer

Open Access
|Dec 2025

References

  1. Bulaklak K, Gersbach CA. The once and future gene therapy. Nat Commun 2020; 11: 5820. doi: 10.1038/s41467-020-19505-2
  2. ASGCT. Gene, Cell and RNA Therapy Landscape Report, Q2 2025 Quarterly Data Report. American Society of Gene & Cell Therapy. [internet]. [cited 2025 Oct 15]. Available at: https://asgct.org/publications/landscape-report
  3. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38: 146. doi: 10.1186/s13046-019-1154-7
  4. Belete TM. The current status of gene therapy for the treatment of cancer. Biologics 2021; 15: 67-77. doi: 10.2147/BTT.S302095
  5. Romano G, Marino IR, Pentimalli F, Adamo V, Giordano A. Insertional mutagenesis and development of malignancies induced by integrating gene delivery systems: implications for the design of safer gene-based interventions in patients. Drug News Perspect 2009; 22: 185-96. doi: 10.1358/dnp.2009.22.4.1367704
  6. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28: 709-22. doi: 10.1016/j. ymthe.2020.01.001
  7. Maurya S, Sarangi P, Jayandharan GR. Safety of Adeno-associated virus-based vector-mediated gene therapy-impact of vector dose. Cancer Gene Ther 2022; 29: 1305-6. doi: 10.1038/S41417-021-00413-6.
  8. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6: 53. doi: 10.1038/s41392-021-00487-6
  9. Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325: 249-75. doi: 10.1016/j. jconrel.2020.06.038
  10. Durymanov M, Reineke J. Non-viral delivery of nucleic acids: insight into mechanisms of overcoming intracellular barriers. Front Pharmacol 2018; 21: 971. doi: 10.3389/fphar.2018.00971
  11. Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144: 107994. doi: 10.1016/j.bioelechem.2021.107994
  12. Rakoczy K, Kisielewska M, Sędzik M, Jonderko L, Celińska J, Sauer N, et al. Electroporation in clinical applications – the potential of gene electrotransfer and electrochemotherapy. Appl Sci 2022; 12: 10821. doi: 10.3390/app122110821
  13. Strojan P, Jesenko T, Omerzel M, Jamsek C, Groselj A, Lampreht Tratar U, et al. Phase I trial of phIL12 plasmid intratumoral gene electrotransfer in patients with basal cell carcinoma in head and neck region. Eur J Surg Oncol 2025; 51: 109574. doi: 10.1016/j.ejso.2025.109574
  14. Daud AI, DeConti RC, Andrews S, Urbas A, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896-903. doi: 10.1200/JCO.2007.15.6794
  15. Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, et al. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 2013; 24: 99-107. doi: 10.1089/humc.2012.240
  16. Yu G, Ye Z, Yuan Y, Wang X, Li T, Wang Y, et al. Recent advancements in biomaterials for chimeric antigen receptor T cell immunotherapy. Biomater Res 2024; 15: 0045. doi: 10.34133/bmr.0045
  17. Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA sensing in organismal tumor control. Cancer Cell 2018; 34: 361-78. doi: 10.1016/j. ccell.2018.05.013
  18. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol 2020; 15: 493-518. doi: 10.1146/annurev-pathmechdis-012419-032847
  19. Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol 2012; 144: 32-40. doi: 10.1016/j.clim.2012.04.006
  20. Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6: 170. doi: 10.1038/s41392-021-00554-y
  21. Elkon KB. Review: Cell death, nucleic acids, and immunity: inflammation beyond the grave. Arthritis Rheumatol 2018; 70: 805-16. doi: 10.1002/art.40452
  22. Maelfait J, Liverpool L, Rehwinkel J. Nucleic acid sensors and programmed cell death. J Mol Biol 2020; 432: 552-68. doi: 10.1016/j.jmb.2019.11.016
  23. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017; 17: 97-111. doi: 10.1038/nri.2016.107
  24. Algazi A, Bhatia S, Agarwala S, Molina M, Lewis K, Faries M, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol 2020; 31: 532-40. doi: 10.1016/j.annonc.2019.12.008
  25. Canton DA, Shirley S, Wright, Connolly R, Burkart C, Mukhopadhyay A, et al. Melanoma treatment with intratumoral electroporation of tavokinogene telseplasmid (pIL-12, tavokinogene telseplasmid). Immunotherapy 2017; 9: 1309-21. doi: 10.2217/imt-2017-0096
  26. Dollin Y, Rubin J, Carvajal RD, Rached H, Nitzkorsk JR. Pembrolizumab and tavokinogene telseplasmid electroporation in metastatic melanoma. Int J Surg Case Rep 2020; 77: 591-4. doi: 10.1016/j.ijscr.2020.11.063
  27. Tarhini AA, Eroglu Z, Eljilany I, Zager JS, Gonzales RJ, Sarnaik AA, et al. Neoadjuvant intratumoral plasmid IL-12 electro-gene-transfer and nivolumab in patients with operable, locoregionally advanced melanoma. Clin Cancer Res 2024; 30: 5333-41. doi: 10.1158/1078-0432.CCR-24-2768
  28. Telli ML, Nagata H, Wapnir I, Acharya CR, Zablotsky K, Fox BA, et al. Intratumoral plasmid IL12 expands CD8 + T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to Anti-PD-1 therapy. Clin Cancer Res 2021; 27, 2481-93. doi: 10.1158/1078-0432. CCR-20-3944
  29. Spanggaard I, Dahlstroem K, Laessoee L, Hansen RH, Johannesen HH, Hendel HW, et al. Gene therapy for patients with advanced solid tumors: a phase I study using gene electrotransfer to muscle with the integrin inhibitor plasmid AMEP. Acta Oncol 2017; 56: 909-16. doi: 10.1080/0284186X.2017.1315171
  30. Kim TJ, Jin H, Hur S, Yang HG, Seo YB, Hong SR, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun 2014; 5: 5317. doi: 10.1038/ncomms6317
  31. Bhuyan PK, Dallas M, Kraynyak K, Herring T, Morrow M, Boyer J, et al. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum Vaccin Immunother 2021; 17: 1288-93. doi: 10.1080/21645515.2020.1823778
  32. Teixeira L, Medioni J, Garibal J, Adotevi O, Doucet L, Dragon Durey M, et al. A first-in-human phase I study of INVAC-1, an optimized human telomerase DNA vaccine in patients with advanced solid tumors. Clin Cancer Res 2020; 26: 588-97. doi: 10.1158/1078-0432.CCR-19-1614
  33. Tebas P, Kraynyak KA, Patel A, Maslow JN, Morrow MP, Sylvester AJ, et al. Intradermal SynCon® ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J Infect Dis 2019; 220: 400-10. doi: 10.1093/infdis/jiz132
  34. Kraynyak KA, Blackwood E, Agnes J, Tebas P, Giffear M, Amante D, et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a phase 1 open-label trial. J Infect Dis 2022; 225: 1923-32. doi: 10.1093/infdis/jiac016
  35. Neumann E, Rosenheck K. Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 1972; 10: 279-90. doi: 10.1007/BF01867861
  36. Wolf H, Rols M, Boldt E, Neumann E, Teissié J. Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 1994; 66: 524-31. doi: 10.1016/s0006-3495(94)80805-7
  37. Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, et al. Effect of experimental electrical and biological parameters on gene transfer by electroporation: a systematic review and meta-analysis. Pharmaceutics 2022; 14: 2700. doi: 10.3390/pharmaceutics14122700.
  38. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841-5. doi: 10.1002/j.1460-2075.1982.tb01257.x
  39. Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods. An overview. Bioelectrochemistry 2018; 120: 166-82. doi: 10.1016/j.bioelechem.2017.12.005
  40. Kotnik T, Rems L, Tarek M, Miklavcic D. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu Rev Biophys 2019; 48: 63-91. doi: 10.1146/annurev-biophys-052118-115451
  41. Krassowska W, Filev PD. Modeling electroporation in a single cell. Biophys J 2007; 92: 404-17. doi: 10.1529/biophysj.106.094235
  42. Paganin-Gioanni A, Bellard E, Escoffre JM, Rols M, Teissié J, Golzio M. Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci U S A 2011; 108: 10443-7. doi: 10.1073/pnas.1103519108
  43. Wu M, Yuan F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS One 2011; 6: e20923. doi: 10.1371/journal.pone.0020923
  44. Rosazza C, Phez E, Escoffre J, Cézanne L, Zumbusch A, Rols M. Cholesterol implications in plasmid DNA electrotransfer: evidence for the involvement of endocytotic pathways. Int J Pharm 2012; 423: 134-43. doi: 10.1016/j. ijpharm.2011.05.024
  45. Markelc B, Skvarca E, Dolinsek T, Prevodnik Kloboves V, Coer A, Sersa G, et al. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry 2015; 103: 111-9. doi: 10.1016/j.bioelechem.2014.08.020
  46. Rosazza C, Buntz A, Rieß T, Wöll D, Zumbusch A, Rols M. Intracellular tracking of single-plasmid DNA particles after delivery by electroporation. Molecular Therapy 2013; 21: 2217-26. doi: 10.1038/mt.2013.182
  47. Rosazza C, Escoffre JM, Zumbusch A, Rols M. The actin cytoskeleton has an active role in the electrotransfer of plasmid DNA in mammalian cells. Molecular Therapy 2011; 19: 913-21. doi: 10.1038/mt.2010.303
  48. Rosazza C, Deschout H, Buntz A, Braeckmans K, Rols M, Zumbusch A. Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol Ther Nucleic Acids 2016; 5: e286. doi: 10.1038/mtna.2015.59
  49. Pérez-Martínez FC, Guerra J, Posadas I, Ceña V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res 2011; 28: 1843-58. doi: 10.1007/s11095-010-0364-7
  50. Cervia LD, Chang CC, Wang L, Mao M, Yuan F. Enhancing electrotransfection efficiency through improvement in nuclear entry of plasmid DNA. Mol Ther Nucleic Acids 2018; 11: 263-71. doi: 10.1016/j.omtn.2018.02.009
  51. Rigby RE, Webb LM, Mackenzie KJ, Li Y, Leitch A, Reijns MAM, et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 2014; 33: 542-58. doi: 10.1002/embj.201386117
  52. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740-5. doi: 10.1038/35047123
  53. Fukuda K. Immune regulation by cytosolic DNA sensors in the tumor microenvironment. Cancers (Basel) 2023; 15: 2114. doi: 10.3390/cancers15072114
  54. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses 2011; 3: 920-40. doi: 10.3390/v3060920
  55. Minamitani T, Iwakiri D, Takada K. Adenovirus virus-associated RNAs induce type I interferon expression through a RIG-I-mediated pathway. J Virol 2011; 85: 4035-40. doi: 10.1128/JVI.02160-10
  56. Yu X, Wang H, Li X, Guo C, Yuan F, Fisher PB, et al. Activation of the MDA-5-IPS-1 viral sensing pathway induces cancer cell death and type I IFN-dependent antitumor immunity. Cancer Res 2016; 76: 2166-76. doi: 10.1158/0008-5472.CAN-15-2142
  57. Eichholz K, Bru T, Phuong Tran TT, Fernandes P, Welles H, Mennechet FJD, et al. Immune-complexed adenovirus induce AIM2-mediated pyroptosis in human dendritic cells. PLoS Pathog 2016; 12: e1005871. doi: 10.1371/journal. ppat.1005871
  58. Suzuki M, Bertin TK, Rogers GL, Cela RC, Zolotukhin I, Palmer DJ, et al. Differential type I interferon-dependent transgene silencing of helper-dependent adenoviral vs. adeno-associated viral vectors in vivo. Mol Ther 2013; 21: 796-805. doi: 10.1038/mt.2012.277
  59. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 2017; 8: 87-104. doi: 10.1016/j. omtm.2017.11.007
  60. Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017, 37: 1-16. doi: 10.1016/j.cytogfr.2017.04.004
  61. Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 2016; 44: 739-54. doi: 10.1016/j.immuni.2016.04.002
  62. Okude H, Ori D, Kawai T. Signaling through nucleic acid sensors and their roles in inflammatory diseases. Front Immunol 2021; 11: 625833. doi: 10.3389/fimmu.2020.625833
  63. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448: 501-5. doi: 10.1038/nature06013
  64. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458: 514-8. doi: 10.1038/nature07725
  65. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 2009; 458: 509-13. doi: 10.1038/nature07710
  66. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010; 11: 997-1004. doi: 10.1038/ni.1932
  67. Miyashita M, Oshiumi H, Matsumoto M, Seya T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 2011; 31: 3802-19. doi: 10.1128/MCB.01368-10
  68. Choi MK, Wang Z, Ban T, Yanai H, Lu Y, Koshiba R, et al. A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci U S A 2009; 106: 17870-5. doi: 10.1073/pnas.0909545106
  69. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 2009; 10: 1065-72. doi: 10.1038/ni.1779
  70. Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, et al. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 2011; 186: 4541-5. doi: 10.4049/jimmunol.1003389
  71. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339: 786-91. doi: 10.1126/science.1232458
  72. Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 2019; 20: 657-74. doi: 10.1038/s41576-019-0151-1
  73. Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57: 718-30. doi: 10.1016/j.immuni.2024.02.019
  74. Semenova N, Bosnjak M, Markelc B, Znidar K, Cemazar M, Heller L. Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res 2019; 47: 10235-46. doi: 10.1093/nar/gkz768
  75. Heller L, Todorovic V, Cemazar M. Electrotransfer of single-stranded or double-stranded DNA induces complete regression of palpable B16.F10 mouse melanomas. Cancer Gene Ther 2013; 20: 695-700. doi: 10.1038/cgt.2013.71
  76. Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 2018; 9: 18665–18681. doi: 10.18632/oncotarget.24816
  77. Bosnjak M, Jesenko T, Kamensek U, Sersa G, Lavrencak J, Heller L, et al. Electrotransfer of different control plasmids elicits different antitumor effectiveness in B16.F10 melanoma. Cancers (Basel) 2018; 10: 37. doi: 10.3390/cancers10020037
  78. Znidar K, Bosnjak M, Cemazar M, Heller LC. Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Mol Ther Nucleic Acids 2016; 5: e322. doi: 10.1038/mtna.2016.34
  79. Medved A, Omerzel M, Jesenko T, Bucek S, Sersa G, Cemazar M. Expression of inducible damage-associated molecular patterns after interleukin-12 gene electrotransfer in mouse melanoma and colorectal cell lines. Biomed Pharmacother 2025; 190: 118414. doi: 10.1016/j.biopha.2025.118414
  80. Heller L, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002; 9: 1321-5. doi: 10.1038/sj.gt.3301802
  81. Grosel A, Sersa G, Kranjc S, Cemazar M. Electrogene therapy with p53 of murine sarcomas alone or combined with electrochemotherapy using cisplatin. DNA Cell Biol 2006; 25: 674-83. doi: 10.1089/dna.2006.25.674
  82. Marrero B, Shirley S, Heller R. Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival. Technol Cancer Res Treat 2014; 13: 551-60. doi: 10.7785/tcrtexpress.2013.600252
  83. Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB, et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther 2006; 13: 969-74. doi: 10.1038/sj.cgt.7700973
  84. McCray AN, Ugen KE, Muthumani K, Kim JJ, Weiner DB, Heller R. Complete regression of established subcutaneous B16 murine melanoma tumors after delivery of an HIV-1 Vpr-expressing plasmid by in vivo electroporation. Mol Ther 2006; 14: 647-55. doi: 10.1016/j.ymthe.2006.06.010.
  85. Radkevich-Brown O, Piechocki MP, Back JB, Weise AM, Pilon-Thomas S, Wei W. Intratumoral DNA electroporation induces anti-tumor immunity and tumor regression. Cancer Immunol Immunother 2010; 59: 409-17. doi: 10.1007/s00262-009-0760-1
  86. Forde PF, Hall LJ, de Kruijf M, Bourke MG, Doddy T, Sadadcharm M, et al. Non-viral immune electrogene therapy induces potent antitumour responses and has a curative effect in murine colon adenocarcinoma and melanoma cancer models. Gene Ther 2015; 22: 29-39. doi: 10.1038/gt.2014.95
  87. Forde PF, Sadadcharam M, Hall LJ, O’ Donovan TR, de Kruijf M, Byrne WL, et al. Enhancement of electroporation facilitated immunogene therapy via T-reg depletion. Cancer Gene Ther 2014; 21: 349-54. doi: 10.1038/cgt.2014.35
  88. Heller LC, Cruz YL, Ferraro B, Yang H, Heller R. Plasmid injection and application of electric pulses alter endogenous mRNA and protein expression in B16.F10 mouse melanomas. Cancer Gene Ther 2010; 17: 864-71. doi: 10.1038/cgt.2010.43
  89. Znidar K, Bosnjak M, Jesenko T, Heller LC, Cemazar M. Upregulation of DNA sensors in B16.F10 melanoma spheroid cells after electrotransfer of pDNA. Technol Cancer Res Treat 2018; 17: 1533033818780088. doi: 10.1177/1533033818780088
  90. Melero I, Quetglas JI, Reboredo M, Dubrot J, Rodriguez-Madoz JR, Mancheño U, et al. Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res 2015; 75: 497-507. doi: 10.1158/0008-5472.CAN-13-3356
  91. Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24, 299-315. doi: 10.1038/s41568-024-00674-x
  92. Babiuk S, Baca-Estrada ME, Foldvari M, Storms M, Rabussay D, Widera G, et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 2002; 20: 3399-408. doi: 10.1016/s0264-410x(02)002694
  93. Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen Littel-van den Hurk S. Induction of immune responses by DNA vaccines in large animals. Vaccine 2003; 21: 649-58. doi: 10.1016/s0264-410x(02)00574-1
  94. Lefesvre P, Attema J, van Bekkum DA. comparison of efficacy and toxicity between electroporation and adenoviral gene transfer. BMC Mol Biol 2002; 3: 12. doi: 10.1186/1471-2199-3-12
  95. Bosnjak M, Znidar K, Sales Conniff AS, Jesenko T, Markelc B, Semenova N, et al. In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery. Biomed Pharmacother 2022; 150: 113088. doi: 10.1016/j. biopha.2022.113088
  96. Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene therapy for regenerative medicine. Pharmaceutics 2023; 15: 856. doi: 10.3390/pharmaceutics15030856
  97. Abdo L, Batista-Silva LR, Bonamino MH. Cost-effective strategies for CAR-T cell therapy manufacturing. Mol Ther Oncol 2025; 33: 200980. doi: 10.1016/j.omton.2025.200980
  98. Gibson J, Dhungana A, Pokhrel M, Arthur B, Suresh P, Adebayo O, et al. Validation of clinical-grade electroporation systems for CRISPR-Cas9-mediated gene therapy in primary hepatocytes for the correction of inherited metabolic liver disease. Cells 2025; 14: 711. doi: 10.3390/cells14100711
DOI: https://doi.org/10.2478/raon-2025-0063 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 467 - 476
Submitted on: Nov 10, 2025
Accepted on: Nov 17, 2025
Published on: Dec 16, 2025
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Tanja Jesenko, Masa Omerzel, Loree C Heller, Maja Cemazar, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.