References
- Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun 2021; 41: 1183-94. doi: 10.1002/cac2.12207
- Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010; 28: 1684-91. doi: 10.1200/JCO.2009.24.9284
- Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-52. doi: 10.1038/35021093
- Zhuang L, Lian C, Wang Z, Zhang X, Wu Z, Huang R. Breast-lesion assessment using amide proton transfer-weighted imaging and dynamic contrast-enhanced MR imaging. Radiol Oncol 2023; 57: 446-54. doi: 10.2478/raon-2023-0051
- Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Strategies for subtypes - dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22: 1736-47. doi: 10.1093/annonc/mdr304
- Tobkes AI, Nord J. Liver biopsy: review of methodology and complications. Dig Dis 1995; 13: 267-74. doi: 10.1159/000121575
- Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010; 1805: 105-17. doi: 10.1016/j.bbcan.2009.11.002
- Lam SW, Jimenez CR, Boven E. Breast cancer classification by proteomic technologies: current state of knowledge. Cancer Treat Rev 2014; 40: 12938. doi: 10.1016/j.ctrv.2013.06.006
- Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: a review. J Magn Reson Imaging 2018; 47: 301-15. doi: 10.1002/jmri.25790
- Horvat JV, Bernard-Davila B, Helbich TH, Zhang M, Morris EA, Thakur SB, et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer. J Magn Reson Imaging 2019; 50: 836-46. doi: 10.1002/jmri.26697
- Partridge SC, Zhang Z, Newitt DC, Gibbs JE, Chenevert TL, Rosen MA, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology 2018; 289: 618-27. doi: 10.1148/radiol.2018180273
- Jiang X, Li H, Devan SP, Gore JC, Xu J. MR cell size imaging with temporal diffusion spectroscopy. Magn Reson Imaging 2021; 77: 109-23. doi: 10.1016/j. mri.2021.01.006
- Meyer HJ, Wienke A, Surov A. Diffusion-Weighted imaging of different breast cancer molecular subtypes: a systematic review and meta-analysis. Breast Care 2021; 17: 47-54. doi: 10.1159/000514407
- Gore JC, Xu J, Colvin DC, Yankeelov TE, Parsons EC, Does MD. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed 2010; 23: 745-56. doi: 10.1002/nbm.1531.
- Iima M, Yamamoto A, Kataoka M, Yamada Y, Omori K, Feiweier T, et al. Time-dependent diffusion MRI to distinguish malignant from benign head and neck tumors. J Magn Reson Imaging 2019; 50: 88-95. doi: 10.1002/jmri.26578
- Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, et al. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12: 6523. doi: 10.1038/s41598-022-10081-7
- Xu J, Jiang X, Li H, Arlinghaus LR, McKinley ET, Devan SP, et al. Magnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med 2020; 83: 2002-14. doi: 10.1002/mrm.28056
- Jiang X, Devan SP, Xie J, Gore JC, Xu J. Improving MR cell size imaging by inclusion of transcytolemmal water exchange. NMR Biomed 2022; 35: e4799. doi: 10.1002/nbm.4799
- Shi D, Wang X, Li S, Liu F, Jiang X, Chen L, et al. Comprehensive characterization of tumor therapeutic response with simultaneous mapping cell size, density, and transcytolemmal water exchange. Magnetic Resonance Imaging, 2025; 122: 110433. doi: 10.1016/j.mri.2025.110433
- Van AT, Holdsworth SJ, Bammer R. In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding. Magn Reson Med 2014; 71: 83-94. doi: 10.1002/mrm.24787
- Ba R, Wang X, Zhang Z, Li Q, Sun Y, Zhang J, et al. Diffusion-time dependent diffusion MRI: effect of diffusion-time on microstructural mapping and prediction of prognostic features in breast cancer. Eur Radiol 2023; 33: 6226-37. doi: 10.1007/s00330-023-09583-y
- Wang X, Ba R, Huang Y, Cao Y, Chen H, Xu H, et al. Time-dependent diffusion MRI helps predict molecular subtypes and treatment response to neoadjuvant chemotherapy in breast cancer. Radiology 2024; 313: e240288. doi: 10.1148/radiol.240288
- Wu D, Jiang K, Li H, Zhang Z, Ba R, Zhang Y, et al. Time-dependent diffusion MRI for quantitative microstructural mapping of prostate cancer. Radiology 2022; 303: 578-87. doi: 10.1148/radiol.211180
- Zhang H, Liu K, Ba R, Zhang Z, Zhang Y, Chen Y, et al. Histological and molecular classifications of pediatric glioma with time-dependent diffusion MRI-based microstructural mapping. Neuro Oncol 2023; 25: 1146-56. doi: 10.1093/neuonc/noad003
- Jiang X, Li H, Xie J, McKinley ET, Zhao P, Gore JC, et al. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med 2017; 78: 156-64. doi: 10.1002/mrm.26356
- Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med 2016; 75: 1076-85. doi: 10.1002/mrm.25684
- Li H, Jiang X, Xie J, Gore JC, Xu J. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn Reson Med 2017; 77: 2239-49. doi: 10.1002/mrm.26309
- Jiang X, McKinley ET, Xie J, Gore JC, Xu J. Detection of treatment response in triple-negative breast tumors to paclitaxel using MRI cell size imaging. J Magn Reson Imaging 2024; 59: 575-84. doi: 10.1002/jmri.28774
- Xu J, Devan SP, Shi D, Pamulaparthi A, Yan N, Zu Z, et al. MATI: A GPU-accelerated toolbox for microstructural diffusion MRI simulation and data fitting with a user-friendly GUI. Magn Reson Imaging 2025; 122: 110428. doi: 10.1016/j.mri.2025.110428
- Suo S, Zhang D, Cheng F, Cao M, Hua J, Lu J, et al. Added value of mean and entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of invasive ductal breast cancer with MR imaging. Eur Radiol 2019; 29: 1425-34. doi: 10.1007/s00330-018-5667-9
- Jeh SK, Kim SH, Kim HS, Kang BJ, Jeong SH, Yim HW, et al. Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 2011; 33: 102-9. doi: 10.1002/jmri.22400
- Park SH, Choi H-Y, Hahn SY. Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla. J Magn Reson Imaging 2015; 41: 17582. doi: 10.1002/jmri.24519
- Liu F, Wang M, Li H. Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla. World J Surg Oncol 2018; 16: 239. doi: 10.1186/s12957-018-1538-8
- Catalano OA, Horn GL, Signore A, Iannace C, Lepore M, Vangel M, et al. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer 2017; 116: 893-902. doi: 10.1038/bjc.2017.26
- Martincich L, Deantoni V, Bertotto I, Redana S, Kubatzki F, Sarotto I, et al. Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol 2012; 22: 1519-28. doi: 10.1007/s00330-012-2403-8
- Shen L, Zhou G, Tong T, Tang F, Lin Y, Zhou J, et al. ADC at 3.0?T as a nonin-vasive biomarker for preoperative prediction of Ki67 expression in invasive ductal carcinoma of breast. Clin Imaging 2018; 52: 16-22. doi: 10.1016/j. clinimag.2018.02.010
- Fan M, He T, Zhang P, Cheng H, Zhang J, Gao X, et al. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer. NMR Biomed 2018; 31: e3869. doi: 10.1002/nbm.3869
- Lee YJ, Kim SH, Kang BJ, Kang YJ, Yoo H, Yoo J, et al. Intravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging 2017; 45: 1394-406. doi: 10.1002/jmri.25514
- Iima M, Kataoka M, Kanao S, Onishi N, Kawai M, Ohashi A, et al. Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology 2018; 287: 432-41. doi: 10.1148/radiol.2017162853
- Iima M, Kataoka M, Honda M, Ohashi A, Kishimoto AO, Ota R, et al. The rate of apparent diffusion coefficient change with diffusion time on breast diffusion-weighted imaging depends on breast tumor types and molecular prognostic biomarker expression. Invest Radiol 2021; 56: 501-8. doi: 10.1097/RLI.0000000000000766
- Springer CS. Using 1H2O MR to measure and map sodium pump activity in vivo. J Magn Reson 2018; 291: 110-26. doi: 10.1016/j.jmr.2018.02.018
- Jarque F, Lluch A, Vera FJ, Pascual A, Vizcarra E, Alberola V, et al. Intratumoral variation of estrogen and progesterone receptors in breast cancer: relationship with histopathological characteristics of the tumor. Oncology 2009; 47: 9-13. doi: 10.1159/000226777
- Sastre-Garau X, Genin P, Rousseau A, Al Ghuzlan A, Nicolas A, Fréneaux P, et al. Increased cell size and Akt activation in HER-2/neu-overexpressing invasive ductal carcinoma of the breast. Histopathology 2004; 45: 142-7. doi: 10.1111/j.1365-2559.2004.01899.x
- Lee H-J, Rha SY, Chung YE, Shim HS, Kim YJ, Hur J, et al. Tumor perfusion-related parameter of diffusion-weighted magnetic resonance imaging: correlation with histological microvessel density. Magn Reson Med 2014; 71: 1554-8. doi: 10.1002/mrm.24810