References
- Li H, Xie X, Du F, Zhu X, Ren H, Ye C, et al. A narrative review of intraoperative use of indocyanine green fluorescence imaging in gastrointestinal cancer: situation and future directions. J Gastrointest Oncol 2023; 14: 1095–113. doi: 10.21037/jgo-23-230
- Uppal JS, Meng E, Caycedo-Marulanda A. Current applications of indocyanine green fluorescence in colorectal surgery: a narrative review. Ann Laparosc Endosc Surg 2023; 8: 18–18. doi: 10.21037/ales-22-84
- Iwamoto M, Ueda K, Kawamura J. A narrative review of the usefulness of indocyanine green fluorescence angiography for perfusion assessment in colorectal surgery. Cancers 2022; 14: 5623. doi: 10.3390/cancers14225623
- Briers D, Duncan DD, Hirst E, Kirkpatric SJ, Larsson M, Steenberg W, et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt 2013; 18: 066018. doi: 10.1117/1.JBO.18.6.066018
- Briers JD, Richards G, He XW. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA). J Biomed Opt 1999; 4: 164. doi: 10.1117/1.429903
- Draijer M, Hondebrink E, Van Leeuwen T, Steenbergen W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci 2009; 24: 639–51. doi: 10.1007/s10103-008-0626-3
- Hamed AM, El-Ghandoor H, El-Diasty F, Saudy M. Analysis of speckle images to assess surface roughness. Optics & Laser Technology 2004; 36: 249–53. doi: 10.1016/j.optlastec.2003.09.005
- Heeman W, Steenbergen W, Van Dam GM, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 2019; 24: 1. doi: 10.1117/1.JBO.24.8.080901
- Cheng H, Yan Y, Duong TQ. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt Express 2008; 16: 10214. doi: 10.1364/OE.16.010214
- Hellmann M, Roustit M, Cracowski JL. Skin microvascular endothelial function as a biomarker in cardiovascular diseases? Pharmacol Rep 2015; 67: 803–10. doi: 10.1016/j.pharep.2015.05.008
- Margouta A, Anyfanti P, Lazaridis A, Nikolaidou B, Mastrogiannis K, Malliora A, et al. Blunted microvascular reactivity in psoriasis patients in the absence of cardiovascular disease, as assessed by laser speckle contrast imaging. Life 2022; 12: 1796. doi: 10.3390/life12111796
- Gopal JP, Vaz O, Varley R, Spiers H, Goldsworthy MA, Siddagangaiah V, et al. Using laser speckle contrast imaging to quantify perfusion quality in kidney and pancreas grafts on vascular reperfusion: a proof-of-principle study. Transplant Direct 2023; 9: e1472. doi: 10.1097/TXD.0000000000001472
- Mirdell R, Farnebo S, Sjöberg F, Tesselaar E. Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds. Burns 2018; 44: 90–8. doi: 10.1016/j.burns.2017.06.010
- Mirdell R, Farnebo S, Sjöberg F, Tesselaar E. Interobserver reliability of laser speckle contrast imaging in the assessment of burns. Burns 2019; 45: 1325–35. doi: 10.1016/j.burns.2019.01.011
- Mirdell R, Farnebo S, Sjöberg F, Tesselaar E. Using blood flow pulsatility to improve the accuracy of laser speckle contrast imaging in the assessment of burns. Burns 2020; 46: 1398–406. doi: 10.1016/j.burns.2020.03.008
- Rege A, Thakor NV, Rhie K, Pathak AP. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 2012; 15: 87–98. doi: 10.1007/s10456-011-9245-x
- Zheng KJ, Middelkoop E, Stoop M, Van Zuijlen PPM, Pijpe A. Validity of laser speckle contrast imaging for the prediction of burn wound healing potential. Burns 2022; 48: 319–27. doi: 10.1016/j.burns.2021.04.028
- Mirdell R, Iredahl F, Sjöberg F, Farnebo S, Tesselaar E. Microvascular blood flow in scalds in children and its relation to duration of wound healing: a study using laser speckle contrast imaging. Burns 2016; 42: 648–54. doi: 10.1016/j.burns.2015.12.005
- Berggren JV, Stridh M, Malmsjö M. Perfusion monitoring during oculoplastic reconstructive surgery: a comprehensive review. Ophthalmic Plast Reconstr Surg 2022; 38: 522–34. doi: 10.1097/IOP.0000000000002114
- Hecht N, Woitzik J, König S, Horn P, Vajkoczy P. Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures. J Cereb Blood Flow Metab 2013; 33: 1000–7. doi: 10.1038/jcbfm.2013.42
- Parthasarathy AB, Weber EL, Richards LM, Fox DJ, Dunn AK. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 2010; 15: 066030. doi: 10.1117/1.3526368
- Richards LM, Towle EL, Fox DJ, Dunn AK. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophoton 2014; 1: 1. doi: 10.1117/1.NPh.1.1.015006
- Woitzik J, Hecht N, Pinczolits A, Sandow N, Major S, Winkler MKL, et al. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology 2013; 80: 1095–102. doi: 10.1212/WNL.0b013e3182886932
- Hecht N, Müller MM, Sandow N, Pinczolits A, Vajkoczy P, Woitzik J. Infarct prediction by intraoperative laser speckle imaging in patients with malignant hemispheric stroke. J Cereb Blood Flow Metab 2016; 36: 1022–32. doi: 10.1177/0271678X15612487
- Klijn E, Hulscher HC, Balvers RK, Holland WPJ, Bakker J, Vincent ALPE, et al. Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy: clinical article. J Neurosurg 2013; 118: 280–86. doi: 10.3171/2012.10.JNS1219
- Konovalov A, Gadzhiagaev V, Grebenev F, Stavtsev D, Piavchenko G, Gerasimenko A, et al. Laser speckle contrast imaging in neurosurgery: a systematic review. World Neurosurg 2023; 171: 35–40. doi: 10.1016/j.wneu.2022.12.048
- Richards LM, Kazmi SS, Olin KE, Waldron JS, Fox DJ, Dunn AK. Intraoperative multi-exposure speckle imaging of cerebral blood flow. J Cereb Blood Flow Metab 2017; 37: 3097–109. doi: 10.1177/0271678X16686987
- Ideguchi M, Kajiwara K, Yoshikawa K, Goto H, Sugimoto K, Inoue T, et al. Avoidance of ischemic complications after resection of a brain lesion based on intraoperative real-time recognition of the vasculature using laser speckle flow imaging. J Neurosurg 2017; 126: 274–80. doi: 10.3171/2016.1.JNS152067
- Tesselaar E, Flejmer AM, Farnebo S, Dasu A. Changes in skin microcirculation during radiation therapy for breast cancer. Acta Oncol 2017; 56: 1072–80. doi: 10.1080/0284186X.2017.1299220
- Zötterman J, Opsomer D, Farnebo S, Blondeel P, Monstrey S, Tesselaar E. Intraoperative laser speckle contrast imaging in DIEP breast reconstruction: a prospective case series study. Plast Reconstr Surg Glob Open 2020; 8: e2529. doi: 10.1097/GOX.0000000000002529
- De Paula MP, Moraes AB, De Souza MDGC, Cavalari EMR, Campbell RC, da Silva Fernandes G, et al. Cortisol level after dexamethasone suppression test in patients with non-functioning adrenal incidentaloma is positively associated with the duration of reactive hyperemia response on microvascular bed. J Endocrinol Invest 2021; 44: 609–19. doi: 10.1007/s40618-020-01360-z
- Mannoh EA, Thomas G, Solórzano CC, Mahadevan-Jansen A. Intraoperative assessment of parathyroid viability using laser speckle contrast imaging. Sci Rep 2017; 7: 14798. doi: 10.1038/s41598-017-14941-5
- Mannoh EA, Thomas G, Baregamian N, Rohde SL, Solórzano CC, Mahadevan-Jansen A. Assessing intraoperative laser speckle contrast imaging of parathyroid glands in relation to total thyroidectomy patient outcomes. Thyroid 2021: 31: 1558–65. doi: 10.1089/thy.2021.0093
- Mannoh EA, Baregamian N, Thomas G, Solórzano CC, Mahadevan-Jansen A. Comparing laser speckle contrast imaging and indocyanine green angiography for assessment of parathyroid perfusion. Sci Rep 2023; 13: 17270. doi: 10.1038/s41598-023-42649-2
- Tchvialeva L, Dhadwal G, Lui H, Kalia S, Zeng H, McLean DI, et al. Polarization speckle imaging as a potential technique for in vivo skin cancer detection. J Biomed Opt 2012; 18: 061211. doi: 10.1117/1.JBO.18.6.061211
- Reyal J, Lebas N, Fourme E, Guihard T, Vilmer C, Masurier PL. Post-occlusive reactive hyperemia in basal cell carcinoma and its potential application to improve the efficacy of solid tumor therapies. Tohoku J Exp Med 2012; 227: 139–47. doi: 10.1620/tjem.227.139
- Zhang Y, Zhao L, Li J, Wang J, Yu H. Microcirculation evaluation of facial nerve palsy using laser speckle contrast imaging: a prospective study. Eur Arch Otorhinolaryngol 2019; 276: 685–92. doi: 10.1007/s00405-019-05281-3
- Zieger M, Kaatz M, Springer S, Riesenberg R, Wuttig A, Kanka M, et al. Multi-wavelength, handheld laser speckle imaging for skin evaluation. Skin Res Technol 2021; 27: 486–93. doi: 10.1111/srt.12959
- Tenland K, Memarzadeh K, Berggren J, Nguyen CD, Dahlstrand U, Hult J, et al. Perfusion monitoring shows minimal blood flow from the flap pedicle to the tarsoconjunctival flap. Ophthalmic Plast Reconstr Surg 2019; 35: 346–9. doi: 10.1097/IOP.0000000000001250
- Berggren J, Tenland K, Ansson CD, Dahlstrand U, Sheikh R, Hult J, et al. Revascularization of free skin grafts overlying modified hughes tarsoconjunctival flaps monitored using laser-based techniques. Ophthalmic Plast Reconstr Surg 2019; 35: 378–82. doi: 10.1097/IOP.0000000000001286
- Tenland K, Berggren J, Engelsberg K, Bohman E, Dahlstrand U, Castelo N, et al. Successful free bilamellar eyelid grafts for the repair of upper and lower eyelid defects in patients and laser speckle contrast imaging of revascularization. Ophthalmic Plast Reconstr Surg 2021; 37: 168–72. doi: 10.1097/IOP.0000000000001724
- Berggren J, Castelo N, Tenland K, Engelsberg K, Dahlstand U, Albinsson J, et al. Revascularization after H-plasty reconstructive surgery in the periorbital region monitored with laser speckle contrast imaging. Ophthalmic Plast Reconstr Surg 2021; 37: 269–73. doi: 10.1097/IOP.0000000000001799
- Berggren J, Castelo N, Tenland K, Dahlstrand, Engelsberg K, Lindstedt S, et al. Reperfusion of free full-thickness skin grafts in periocular reconstructive surgery monitored using laser speckle contrast imaging. Ophthalmic Plast Reconstr Surg 2021; 37: 324–8. doi: 10.1097/IOP.0000000000001851
- Berggren JV, Sheikh R, Hult J, Engelsberg K, Malmsjö M. Laser speckle contrast imaging of a rotational full-thickness lower eyelid flap shows satisfactory blood perfusion. Ophthalmic Plast Reconstr Surg 2021; 37: e139–e141. doi: 10.1097/IOP.0000000000001921
- Berggren JV, Tenland K, Sheikh R, Hult J, Engelsberg K, Lindstedt S, et al. Laser speckle contrast imaging of the blood perfusion in glabellar flaps used to repair medial canthal defects. Ophthalmic Plast Reconstr Surg 2022; 38: 274–9. doi: 10.1097/IOP.0000000000002082
- Stridh M, Dahlstrand U, Naumovska M, Engelsberg K, Gesslein B, Sheikh R, et al. Functional and molecular 3D mapping of angiosarcoma tumor using non-invasive laser speckle, hyperspectral, and photoacoustic imaging. Orbit 2024; 9: 1–11. doi: 10.1080/01676830.2024.2331718
- Eriksson S, Jan N, Gert L, Sturesson C. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Med Devices 2014; 25: 257–61. doi: 10.2147/MDER.S63393
- Milstein DMJ, Ince C, Gisbertz SS, Boateng KB, Geerts BF, Hollmann MW, et al. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine 2016; 95: e3875. doi: 10.1097/MD.0000000000003875
- Ambrus R, Achiam MP, Secher NH, Svendsen MB, Runitz K, Siemsen M, et al. Evaluation of gastric microcirculation by laser speckle contrast imaging during esophagectomy. J Am Col Surg 2017; 225: 395–402. doi: 10.1016/j.jamcollsurg.2017.06.003
- Ambrus R, Svendsen LB, Secher NH, Runitz K, Frediriksen HJ, Svendsen MBS, et al. A reduced gastric corpus microvascular blood flow during Ivor-Lewis esophagectomy detected by laser speckle contrast imaging technique. Scand J Gastroenterol 2017; 52: 455–61. doi: 10.1080/00365521.2016.1265664
- Di Maria C, Hainsworth PJ, Allen J. Intraoperative thermal and laser speckle contrast imaging assessment of bowel perfusion in two cases of colorectal resection surgery. In: Ng EY, Etehadtavakol M, editors. Application of infrared to biomedical sciences. Series in BioEngineering. Singapore: Springer; 2017. p. 437–49. doi: 10.1007/978-981-10-3147-2_25
- Jansen SM, De Bruin DM, Van Berge Henegouwen MI, Bloemen PR, Strackee SD, Veelo DP, et al. Effect of ephedrine on gastric conduit perfusion measured by laser speckle contrast imaging after esophagectomy: a prospective in vivo cohort study. Dis Esophagus 2018; 1: 31. doi: 10.1093/dote/doy031
- Kojima S, Sakamoto T, Nagai Y, Matsui Y, Nambu K, Masamune K. Laser speckle contrast imaging for intraoperative quantitative assessment of intestinal blood perfusion during colorectal surgery: a prospective pilot study. Surg Innov 2019; 26: 293–301. doi: 10.1177/1553350618823426
- Kaneko T, Funahashi K, Ushigome M, Kagami S, Yoshida K, Koda T, et al. Noninvasive assessment of bowel blood perfusion using intraoperative laser speckle flowgraphy. Langenbecks Arch Surg 2020; 405: 817–26. doi: 10.1007/s00423-020-01933-9
- Heeman W, Dijkstra K, Hoff C, Koopal S, Pierie JP, Bouma H, et al. Application of laser speckle contrast imaging in laparoscopic surgery. Biomed Opt Express 2019; 10: 2010–9. doi: 10.1364/BOE.10.002010
- Kojima S, Sakamoto T, Matsui Y, Nambu K, Masamune K. Clinical efficacy of bowel perfusion assessment during laparoscopic colorectal resection using laser speckle contrast imaging: a matched case-control study. Asian J Endoscop Surgery 2020; 13: 329–35. doi: 10.1111/ases.12759
- Slooter MD, Jansen SMA, Bloemen PR, van den Elzen RM, Wilk LS, van Leeuwen TG, et al. Comparison of optical imaging techniques to quantitatively assess the perfusion of the gastric conduit during oesophagectomy. Applied Sciences 2020; 10: 5522. doi: 10.3390/app10165522
- Heeman W, Calon J, Van Der Bilt A, Pierie JPEN, Pereboom I, van Dam GM, et al. Dye-free visualisation of intestinal perfusion using laser speckle contrast imaging in laparoscopic surgery: a prospective, observational multi-centre study. Surg Endosc 2023; 37: 9139–46. doi: 10.1007/s00464-023-10493-0
- Nwaiwu CA, McCulloh CJ, Skinner G, Shah SK, Kim PC, Schwaitzberg SD, et al. Real-time first-in-human comparison of laser speckle contrast imaging and ICG in minimally invasive colorectal & bariatric surgery. J Gastrointest Surgery 2023; 27: 3083–5. doi: 10.1007/s11605-023-05855-x
- Yataco AR, Corretti MC, Gardner AW, Womack CJ, Katzel LI. Endothelial reactivity and cardiac risk factors in older patients with peripheral arterial disease. Am J Cardiol 1999; 83: 754–8. doi: 10.1016/S0002-9149(98)00984-9
- Souza EG, De Lorenzo A, Huguenin G, Oliveira GMM, Tibiriçá E. Impairment of systemic microvascular endothelial and smooth muscle function in individuals with early-onset coronary artery disease: studies with laser speckle contrast imaging. Coron Artery Dis 2014; 25: 23–28. doi: 10.1097/MCA.0000000000000055
- Paras C, Keller M, White L, Phay J, Mahadevan-Jansen A. Near-infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt 2011; 16: 067012. doi: 10.1117/1.3583571
- Benmiloud F, Godiris-Petit G, Gras R, Gillot JC, Turrin N, Penarada G, et al. Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: results of the PARAFLUO multicenter randomized clinical trial. JAMA Surg 2020; 155: 106. doi: 10.1001/jamasurg.2019.4613
- Dip F, Falco J, Verna S, Prunello M, Loccisano M, Quadri P, et al. Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy. J Am Coll Surg 2019; 228: 744–51. doi: 10.1016/j.jamcollsurg.2018.12.044
- Stergar J, Hren R, Milanič M. Design and validation of a custom-made laboratory hyperspectral imaging system for biomedical applications using a broadband LED light source. Sensors 2022; 22: 6274. doi: 10.3390/s22166274
- Hren R, Sersa G, Simoncic U, Milanic M. Imaging perfusion changes in oncological clinical applications by hyperspectral imaging: a literature review. Radiol Oncol 2022; 56: 420–9. doi: 10.2478/raon-2022-0051
- Hren R, Stergar J, Simončič U, Serša G, Milanič M. Assessing perfusion changes in clinical oncology applications using hyperspectral imaging. In: Jarm T, Šmerc R, Mahnič-Kalamiza S, editors. 9th European Medical and Biological Engineering Conference. Portorož, Slovenia; 2024 Jun 9–13. Vol 112. IFMBE Proceedings. Switzerland: Springer Nature; 2024. p. 122–9. doi: 10.1007/978-3-031-61625-9_14
- Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nat Rev Clin Oncol 2022; 19: 365–84. doi: 10.1038/s41571-022-00615-3
- Xia Q, Li D, Yu T, Zhu J, Zhu D. In vivo skin optical clearing for improving imaging and light-induced therapy: a review. J Biomed Opt 2023; 28: 060901. doi: 10.1117/1.JBO.28.6.060901
- Heeman W, Maassen H, Dijkstra K, Calon J, van Goor H, Leuvenik H, et al. Real-time, multi-spectral motion artefact correction and compensation for laser speckle contrast imaging. Sci Rep 2022; 12: 21718. doi: 10.1038/s41598-022-26154-6
- Gnyawali SC, Blum K, Pal D, Ghatak S, Khanna S, Roy S, et al. Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation. Sci Rep 2017; 7: 41048. doi: 10.1038/srep41048
- Han G, Li D, Wang J, Guo Q, Yuan J, Chen R, et al. Adaptive window space direction laser speckle contrast imaging to improve vascular visualization. Biomed Opt Express 2023; 14: 3086. doi: 10.1364/BOE.488054
- Hren R, Sersa G, Simoncic U, Milanic M. Imaging microvascular changes in nonocular oncological clinical applications by optical coherence tomography angiography: a literature review. Radiol Oncol 2023; 57: 411–8. doi: 10.2478/raon-2023-0057
- Stergar J, Hren R, Milanič M. Design and validation of a custom-made hyperspectral microscope imaging system for biomedical applications. Sensors 2023; 23: 2374. doi: 10.3390/s23052374
- Marin A, Hren R, Milanič M. Pulsed photothermal radiometric depth profiling of bruises by 532 nm and 1064 nm lasers. Sensors 2023; 23: 2196. doi: 10.3390/s23042196
- Rogelj L, Dolenec R, Tomšič MV, Laister E, Simončič U, Milanič M, et al. Anatomically accurate, high-resolution modeling of the human index finger using in vivo magnetic resonance imaging. Tomography 2022; 8: 2347–59. doi: 10.3390/tomography8050196
- Milanic M, Hren R, Stergar J, Simoncic U. Monitoring of caffeine consumption effect on skin blood properties by diffuse reflectance spectroscopy. Physiol Res 2024; 73: 47–56. doi: 10.33549/physiolres.935138
- Marin A, Verdel N, Milanič M, Majaron B. Noninvasive monitoring of dynamical processes in bruised human skin using diffuse reflectance spectroscopy and pulsed photothermal radiometry. Sensors 2021; 21: 302. doi: 10.3390/s21010302
- Milanic M, Marin A, Stergar J, Verdel N, Majaron B. Monitoring of caffeine consumption effect on skin blood properties by diffuse reflectance spectroscopy. In: Dehghani H, Wabnitz H, editors. Diffuse optical spectroscopy and imaging VI. SPIE Proceedings; European Conference on Biomedical Optics 2017. Munich Germany; 25–29 Jun 2017. Paper 1041215. doi: 10.1117/12.2286140
- Verdel N, Marin A, Milanič M, Majaron B. Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy. Biomed Opt Express 2019; 10: 944. doi: 10.1364/BOE.10.000944