Have a personal or library account? Click to login
The influence of cytotoxic drugs on the immunophenotype of blast cells in paediatric B precursor acute lymphoblastic leukaemia Cover

The influence of cytotoxic drugs on the immunophenotype of blast cells in paediatric B precursor acute lymphoblastic leukaemia

Open Access
|Feb 2024

References

  1. Campbell M, Castillo L, Riccheri C, Janic D, Jazbec J, Kaiserova E, et al. ALL ICBFM 2009. A randomized trial of the I-BFM-SG for the management of childhood non-B acute lymphoblastic leukemia. Final version of therapy protocol from August 14 2009. [Internet]. [cited 2023 Mar 15]. Available at https://www.bialaczka.org/wp-content/uploads/2016/10/ALLIC_BFM_2009.pdf
  2. Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 2016; 375: 1044–53. doi: <a href="https://doi.org/10.1056/nejmoa1605085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1056/nejmoa1605085</a>
  3. Hayden PJ, Roddie C, Bader P, Basak, GW, Bonig H, Bonini C, et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann Oncol 2022; 33: 259–75. doi: <a href="https://doi.org/10.1016/j.annonc.2021.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.annonc.2021.12.003</a>
  4. Li Y, Moriyama T, Yoshimura S, Zhao X, Li Z, Yang X, et al. PAX5 epigenetically orchestrates CD58 transcription and modulates blinatumomab response in acute lymphoblastic leukemia. Sci Adv 2022; 8: eadd6403. doi: <a href="https://doi.org/10.1126/sciadv.add6403" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1126/sciadv.add6403</a>
  5. Yan X, Chen D, Ma X, Wang Y, Guo Y, Wei J, et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv 2022; 6: 5844–56. doi: <a href="https://doi.org/10.1182/bloodadvances.2022007891" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/bloodadvances.2022007891</a>
  6. Hunger SP, Raetz EA. How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood 2020; 136: 1803–12. doi: <a href="https://doi.org/10.1182/blood.2019004043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.2019004043</a>
  7. Dworzak MN, Schumich A, Printz D, Pötschger U, Husak Z, Attarbaschi A, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008; 112: 3982–88. doi: <a href="https://doi.org/10.1182/blood-2008-06-164129" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2008-06-164129</a>
  8. Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005; 19: 49–56. doi: <a href="https://doi.org/10.1038/sj.leu.2403559" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/sj.leu.2403559</a>
  9. Gaipa G, Basso G, Aliprandi S, Migliavacca M, Vallinoto C, Maglia O, et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom 2008; 74: 150–5. doi: <a href="https://doi.org/10.1002/cyto.b.20408" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/cyto.b.20408</a>
  10. van der Sluijs-Gelling AJ, van der Velden VHJ, Roeffen ETJM, Veerman AJP, van Wering ER. Immunophenotypic modulation in childhood precursor-BALL can be mimicked in vitro and is related to the induction of cell death. Leukemia 2005; 19: 1845–7. doi: <a href="https://doi.org/10.1038/sj.leu.2403911" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/sj.leu.2403911</a>
  11. Chen D, Gerasimčik N, Camponeschi A, Tan Y, Wu Q, Brynjolfsson S, et al. CD27 expression and its association with clinical outcome in children and adults with pro-B acute lymphoblastic leukemia. Blood Cancer J 2017; 7: e575. doi: <a href="https://doi.org/10.1038/bcj.2017.55" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/bcj.2017.55</a>
  12. Riether C, Schürch CM, Bührer ED, Hinterbrandner M, Huguenin AL, Hoepner S, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med 2017; 214: 359–80. doi: <a href="https://doi.org/10.1084/jem.20152008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1084/jem.20152008</a>
  13. Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open 2020; 4(Suppl 3): e000629. doi: <a href="https://doi.org/10.1136/esmoopen-2019-000629" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/esmoopen-2019-000629</a>
  14. Aljurf M, Chaudhri NA, Almhareb F, Walter CU, Nounou R, Khalil S, et al. CD34 expression in adult acute lymphoblastic leukemia (ALL) Is a favorable prognostic factor in patients treated with stem cell transplant in first remission. Blood 2011; 118: 4091. doi: <a href="https://doi.org/10.1182/blood.v118.21.4091.4091" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.v118.21.4091.4091</a>
  15. Dakka N, Bellaoui H, Bouzid N, Khattab M, Bakri Y, Benjouad A. CD10 and CD34 expression in childhood acute lymphoblastic leukemia in morocco: clinical relevance and outcome. Pediatr Hematol Oncol 2009; 26: 216–31. doi: <a href="https://doi.org/10.1080/07357900902897557" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07357900902897557</a>
  16. Cario G, Rhein P, Mitlöhner R, Zimmermann M, Bandapalli OR, Romey R, et al. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2014; 99: 103–10. doi: <a href="https://doi.org/10.3324/haematol.2013.090225" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3324/haematol.2013.090225</a>
  17. Guillaume N, Penther D, Vaida I, Gruson B, Harrivel V, Claisse JF, et al. CD66c expression in B-cell acute lymphoblastic leukemia: strength and weakness. Int J Lab Hematol 2011; 33: 92–6. doi: <a href="https://doi.org/10.1111/j.1751-553X.2010.01254.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1751-553X.2010.01254.x</a>
  18. Kiyokawa N, Iijima K, Tomita O, Miharu M, Hasegawa D, Kobayashi K, et al. Significance of CD66c expression in childhood acute lymphoblastic leukemia. Leuk Res 2014; 38: 2–48. doi: <a href="https://doi.org/10.1016/j.leukres.2013.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.leukres.2013.10.008</a>
  19. Consolini R, Legitimo A, Rondelli R, Guguelmi C, Barisone E, Lippi A, et al. Clinical relevance of CD10 expression in childhood ALL. The Italian Association for Pediatric Hematology and Oncology (AIEOP). Haematologica 1998; 83: 967–73. PMID: 9864914
  20. Mitwasi N, Arndt C, Loureiro LR, Kegler A, Fasslrinner F, Berndt N, et al. Targeting CD10 on B-cell leukemia using the universal CAR T-cell platform (UniCAR). Int J Mol Sci 2022; 23: 4912. doi: <a href="https://doi.org/10.3390/ijms23094920" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijms23094920</a>
  21. Gökbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: Current knowledge and future prospects. Ann Hematol 2004; 83: 201–5. doi: <a href="https://doi.org/10.1007/s00277-003-0752-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00277-003-0752-8</a>
  22. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012; 1: 1–7. doi: <a href="https://doi.org/10.1186/2162-3619-1-36" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/2162-3619-1-36</a>
  23. Brown PA, Ji L, Xu X, Devidas M, Hogan L, Borowitz JB, et al. A randomized phase 3 trial of blinatumomab vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lymph-oblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of blinatumomab: a report from children’s oncology group study AALL1331. Blood 2019; 134(Suppl 2): LBA-1. doi: <a href="https://doi.org/10.1182/blood-2019-132435" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2019-132435</a>
  24. Fabrizio VA, Phillips CL, Lane A, Baggott C, Prabhu S, Egeler E, et al. Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: A Pediatric Real World CAR Consortium Report. Blood Adv 2022; 6: 600–10. doi: <a href="https://doi.org/10.1182/bloodadvances.2021005564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/bloodadvances.2021005564</a>
  25. Schnitzlein WM, Zuckermann FA. Determination of the specificity of CD45 and CD45R monoclonal antibodies through the use of transfected hamster cells producing individual porcine CD45 isoforms. Vet Immunol Immunopathol 1998; 60: 389–401. doi: <a href="https://doi.org/10.1016/S0165-2427(97)00113-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0165-2427(97)00113-X</a>
  26. Balasubramanian P, Singh J, Verma D, Kumar R, Bakhshi S, Tanwar P, et al. Prognostic significance of CD45 antigen expression in pediatric acute lymphoblastic leukemia. Blood Cells Mol Dis 2021; 89: 102562. doi: <a href="https://doi.org/10.1016/j.bcmd.2021.102562" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.bcmd.2021.102562</a>
  27. Zhang Y, Liu Q, Yang S, Liao Q. CD58 Immunobiology at a glance. Front Immunol 2021; 12: 1–20. doi: <a href="https://doi.org/10.3389/fimmu.2021.705260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fimmu.2021.705260</a>
  28. Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, et al. CD137 promotes proliferation and survival of human B cells. J Immunol 2010; 184: 787–95. doi: <a href="https://doi.org/10.4049/jimmunol.0901619" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4049/jimmunol.0901619</a>
  29. Pieters R, Schrappe M, Valsecchi MG, Biondi A, de Rossi G, Suppiah R, et al. International collaborative treatment protocol for the infants under one year with acute lymphoblastic or biphenotypic leukemia - INTERFANT 06. 2008; version 11(17 July 2007). Cochrane Central Register of Controlled Trials. Available at: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01834165/full
  30. Brozic A, Pohar Marinsek Z, Novakovic S, Kloboves Prevodnik V. Inconclusive flow cytometric surface light chain results; can cytoplasmic light chains, Bcl-2 expression and PCR clonality analysis improve accuracy of cytological diagnoses in B-cell lymphomas? Diagn Pathol 2015; 10: 1–10. doi: <a href="https://doi.org/10.1186/s13000-015-0427-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13000-015-0427-5</a>
  31. Brožič A. [Clonality and antigenic properties of reactive and neoplastic lymphocytic proliferations]. [Slovenian]. Doctoral Dissertation; 2016. [Internet]. Available at: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=84423
  32. Team RC. A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computin; 2020. [Internet]. [cited 2023 Feb 15]. Available at: cwww.r-project.org/
  33. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev 2017; 59: 65–98. doi: <a href="https://doi.org/10.1137/141000671" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/141000671</a>
  34. Pinheiro J, Bates D, DebRoy S, Sarkar D. Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version Nov 27 2023. [Internet]. [cited 2023 Dec]. Available at: https://cran.r-project.org/web/packages/nlme/nlme.pdf
  35. Bates D, Alday P, Kleinschmidt D, Calderón JBS, Noack A, Kelman T, et al. JuliaStats/MixedModels.jl: v2.3.0 (v2.3.0). Zenodo; 2020 [Internet]. [cited 2023 Feb 16]. Available at: <a href="https://doi.org/10.5281/ZENODO.3727845" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5281/ZENODO.3727845</a>
  36. Peterlin J, Kejžar N, Blagus R. Correct specification of design matrices in linear mixed effects models: tests with graphical representation. TEST 2023; 32: 184–210. doi: <a href="https://doi.org/10.1007/s11749-022-00830-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11749-022-00830-1</a>
  37. Dworzak MN, Gaipa G, Schumich A, Maglia O, Ratei R, Veltroni M, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-study group. Cytometry B Clin Cytom 2010; 78: 147–53. doi: <a href="https://doi.org/10.1002/cyto.b.20516" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/cyto.b.20516</a>
  38. Espinoza-Gutarra MR, Agarwal P, Ferrer L, Czader M, Dave U. Relationship between CD45 expression and outcomes in B lymphoblastic leukemia/lymphoma. Blood 2020; 136(Suppl 1): 24. doi: <a href="https://doi.org/10.1182/blood-2020-142085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood-2020-142085</a>
  39. Schwarz H, Valbracht J, Tuckwell J, Von Kempis J, Lotz M. ILA the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 1995; 85: 1043–52. doi: <a href="https://doi.org/10.1182/blood.v85.4.1043.bloodjournal8541043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1182/blood.v85.4.1043.bloodjournal8541043</a>
  40. Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 2005; 17: 275–81. doi: <a href="https://doi.org/10.1016/j.coi.2005.04.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.coi.2005.04.004</a>
  41. Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory B-cell marker. Immunol Today 2000; 21: 204–6. doi: <a href="https://doi.org/10.1016/S0167-5699(00)01605-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0167-5699(00)01605-4</a>
  42. Taraban VY, Rowley TF, Kerr JP, Willoughby JE, Johnson PM, Al-Shamkhani A, et al. CD27 costimulation contributes substantially to the expansion of functional memory CD8+ T cells after peptide immunization. Eur J Immunol 2013; 43: 3314–23. doi: <a href="https://doi.org/10.1002/eji.201343579" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/eji.201343579</a>
  43. Vitale LA, He LZ, Thomas LJ, Widger J, Weidlick J, Crocker A, et al. Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. Clin Cancer Res 2012; 18: 3812–21. doi: <a href="https://doi.org/10.1158/1078-0432.CCR-11-3308" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1158/1078-0432.CCR-11-3308</a>
  44. Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V, Pieters R, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012; 13: 936–45. doi: <a href="https://doi.org/10.1016/S1470-2045(12)70377-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S1470-2045(12)70377-7</a>
DOI: https://doi.org/10.2478/raon-2024-0006 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 133 - 144
Submitted on: May 14, 2023
Accepted on: Dec 6, 2023
Published on: Feb 21, 2024
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Tomaz Prelog, Simon Bucek, Andreja Brozic, Jakob Peterlin, Marko Kavcic, Masa Omerzel, Bostjan Markelc, Tanja Jesenko, Veronika Kloboves Prevodnik, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.