Have a personal or library account? Click to login
The effects of normobaric and hyperbaric oxygenation on MRI signal intensities in T1-weighted, T2-weighted and FLAIR images in human brain Cover

The effects of normobaric and hyperbaric oxygenation on MRI signal intensities in T1-weighted, T2-weighted and FLAIR images in human brain

Open Access
|Sep 2023

References

  1. McGrath DM, Naish JH, O’Connor JP, Hutchinson CE, Waterton JC, Taylor CJ, et al. Oxygen-induced changes in longitudinal relaxation times in skeletal muscle. Magn Reson Imaging 2008; 26: 221–7. doi: 10.1016/j.mri.2007.06.011
  2. Bloch F, Hansen WW, Packard M. The nuclear induction experiment. Phys Rev 1946; 70: 474–85. doi: DOI 10.1103/PhysRev.70.474
  3. Chiarotti G, Cristiani G, Giulotto L. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Nuovo Cimento 1955; 1: 863–73. doi: Doi 10.1007/Bf02731333
  4. Young IR, Clarke GJ, Bailes DR, Pennock JM, Doyle FH, Bydder GM. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr 1981; 5: 543–7. doi: 10.1016/0149-936x(81)90089-8
  5. Tain RW, Scotti AM, Li W, Zhou XJ, Cai K. Influence of free radicals on the intrinsic MRI relaxation properties. Adv Exp Med Biol 2017; 977: 73–9. doi: 10.1007/978-3-319-55231-6_11
  6. Tain RW, Scotti AM, Li W, Zhou XJ, Cai K. Imaging short-lived reactive oxygen species (ROS) with endogenous contrast MRI. J Magn Reson Imaging 2018; 47: 222–9. doi: 10.1002/jmri.25763
  7. Tadamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 1997; 7: 220–5. doi: 10.1002/jmri.1880070134
  8. Ding Y, Mason RP, McColl RW, Yuan Q, Hallac RR, Sims RD, et al. Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J Magn Reson Imaging 2013; 38: 1230–6. doi: 10.1002/jmri.24006
  9. O’Connor JP, Naish JH, Jackson A, Waterton JC, Watson Y, Cheung S, et al. Comparison of normal tissue R1 and R*2 modulation by oxygen and carbogen. Magn Reson Med 2009; 61: 75–83. doi: 10.1002/mrm.21815
  10. Haddock B, Larsson HB, Hansen AE, Rostrup E. Measurement of brain oxygenation changes using dynamic T(1)-weighted imaging. Neuroimage 2013; 78: 7–15. doi: 10.1016/j.neuroimage.2013.03.068
  11. Muir ER, Cardenas D, Huang S, Roby J, Li G, Duong TQ. MRI under hyperbaric air and oxygen: effects on local magnetic field and relaxation times. Magn Reson Med 2014; 72: 1176–81. doi: 10.1002/mrm.25027
  12. Wu Y, Gao X, Feng X, Tao X, Tang CY. Oxygen-enhanced magnetic resonance imaging of the brain: a rodent model. Neuroreport 2012; 23: 581–4. doi: 10.1097/WNR.0b013e328353a4bb
  13. Uematsu H, Takahashi M, Hatabu H, Chin CL, Wehrli SL, Wehrli FW, et al. Changes in T1 and T2 observed in brain magnetic resonance imaging with delivery of high concentrations of oxygen. J Comput Assist Tomogr 2007; 31: 662–5. doi: 10.1097/rct.0b013e3180319114
  14. Kettunen MI, Grohn OH, Silvennoinen MJ, Penttonen M, Kauppinen RA. Effects of intracellular pH, blood, and tissue oxygen tension on T1 rho relaxation in rat brain. Magn Reson Med 2002; 48: 470–7. doi: 10.1002/mrm.10233
  15. Remmele S, Sprinkart AM, Muller A, Traber F, von Lehe M, Gieseke J, et al. Dynamic and simultaneous MR measurement of R1 and R2* changes during respiratory challenges for the assessment of blood and tissue oxygenation. Magn Reson Med 2013; 70: 136–46. doi: 10.1002/mrm.24458
  16. Zaharchuk G, Martin AJ, Rosenthal G, Manley GT, Dillon WP. Measurement of cerebrospinal fluid oxygen partial pressure in humans using MRI. Magn Reson Med 2005; 54: 113–21. doi: 10.1002/mrm.20546
  17. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation-time of water protons in whole-blood at high-field. Biochim Biophys Acta 1982; 714: 265–70. doi: Doi 10.1016/0304-4165(82)90333-6
  18. Anzai Y, Ishikawa M, Shaw DW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. AJNR Am J Neuroradiol 2004; 25: 274–9. PMID: 14970030
  19. Taylor CD. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere. Undersea Biomed Res 1979; 6: 147–54. PMID: 531994
  20. Whalen RE, Saltzman HA, Holloway DH, Jr., McIntosh HD, Sieker HO, Brown IW Jr. Cardiovascular and blood gas responses to hyperbaric oxygenation. Am J Cardiol 1965; 15: 638–46. doi: 10.1016/0002-9149(65)90350-4
  21. Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg 2004; 101: 499–504. doi: 10.3171/jns.2004.101.3.0499
  22. Poff AM, Kernagis D, D’Agostino DP. Hyperbaric environment: Oxygen and cellular damage versus protection. Compr Physiol 2016; 7: 213–34. doi: 10.1002/cphy.c150032
  23. Matsumoto K, Bernardo M, Subramanian S, Choyke P, Mitchell JB, Krishna MC, et al. MR assessment of changes of tumor in response to hyperbaric oxygen treatment. Magn Reson Med 2006; 56: 240–6. doi: 10.1002/mrm.20961
  24. Kinoshita Y, Kohshi K, Kunugita N, Tosaki T, Yokota A. Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging. Br J Cancer 2000; 82: 88–92. doi: 10.1054/bjoc.1999.0882
  25. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 2010; 112: 1080–94. doi: 10.3171/2009.7.JNS09363
  26. Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, et al. Regional difference of ROS generation, lipid peroxidaton, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res 1999; 22: 361–6. doi: doi 10.1007/Bf02979058
  27. Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2: 12. doi: 10.3389/fnagi.2010.00012
  28. Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S, et al. Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 2006; 47: 1571–80. doi: 10.1167/iovs.05-1475
  29. Braga FT, da Rocha AJ, Hernandez G, Arikawa RK, Ribeiro IM, Fonseca RB. Relationship between the concentration of supplemental oxygen and signal intensity of CSF depicted by fluid-attenuated inversion recovery imaging. Am J Neuroradiol 2003; 24: 1863–8. PMID: 14561617
  30. Deliganis AV, Fisher DJ, Lam AM, Maravilla KR. Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia: the role of supplemental O2. Radiology 2001; 218: 152–6. doi: 10.1148/radiology.218.1.r01ja43152
  31. Frigon C, Jardine DS, Weinberger E, Heckbert SR, Shaw DW. Fraction of inspired oxygen in relation to cerebrospinal fluid hyperintensity on FLAIR MR imaging of the brain in children and young adults undergoing anesthesia. AJR Am J Roentgenol 2002; 179: 791–6. doi: 10.2214/ajr.179.3.1790791
  32. Leach RM, Rees PJ, Wilmshurst P. Hyperbaric oxygen therapy. BMJ 1998; 317: 1140–3. doi: 10.1136/bmj.317.7166.1140
  33. Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir Suppl 1993; 59: 58–63. doi: 10.1007/978-3-7091-9302-0_10
DOI: https://doi.org/10.2478/raon-2023-0043 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 317 - 324
Submitted on: May 29, 2023
Accepted on: Jul 24, 2023
Published on: Sep 4, 2023
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Vida Velej, Ksenija Cankar, Jernej Vidmar, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution 4.0 License.