References
- The Lancet Haematology. New guidelines for paediatric Hodgkin lymphoma. Lancet Haematol 2020; 7: e851. doi: 10.1016/S2352-3026(20)30371-9
- Nagpal P, Akl MR, Ayoub NM, Tomiyama T, Cousins T, Tai B, et al. Pediatric Hodgkin lymphoma: biomarkers, drugs, and clinical trials for translational science and medicine. Oncotarget 2016; 7: 67551–73. doi: 10.18632/onco-target.11509
- Ansell SM. Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 2015; 90: 1574–83. doi: 10.1016/j.mayocp.2015.07.005
- Ehrhardt MJ, Flerlage JE, Armenian SH, Castellino SM, Hodgson DC, Hudson MM. Integration of pediatric Hodgkin lymphoma treatment and late effects guidelines: seeing the forest beyond the trees. J Natl Compr Canc Netw 2021; 19: 755–64. doi: 10.6004/jnccn.2021.7042
- Hoppe RT, Advani RH, Ai WZ, Ambinder RF, Armand P, Bello CM, et al. Hodgkin lymphoma, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18: p. 755–81. doi: 10.6004/jnccn.2020.0026
- Kluge R, Kurch L, Georgi T, Metzger M. Current role of FDG-PET in pediatric Hodgkin's lymphoma. Semin Nucl Med 2017; 47: 242–57. doi: 10.1053/j.semnuclmed.2017.01.001
- Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014; 32: 3059–68. doi: 10.1200/JCO.2013.54.8800
- Zaucha JM, Chauvie S, Zaucha R, Biggii A, Gallamini A. The role of PET/CT in the modern treatment of Hodgkin lymphoma. Cancer Treat Rev 2019; 77: 44–56. doi: 10.1016/j.ctrv.2019.06.002
- El-Galaly TC, Villa D, Gormsen LC, Baech J, Lo A, Cheah CY. FDG-PET/CT in the management of lymphomas: current status and future directions. J Intern Med 2018; 284: 358–76. doi: 10.1111/joim.12813
- Kertész H, Beyer T, London K, Saleh H, Chung D, Rausch I, et al. Reducing radiation exposure to paediatric patients undergoing [18F]FDG-PET/CT imaging. Mol Imaging Biol 2021; 23: 775–86. doi: 10.1007/s11307-021-01601-4
- Banka P, Geva T. Advances in pediatric cardiac MRI. Curr Opin Pediatr 2016; 28: 575–83. doi: 10.1097/MOP.0000000000000400
- Daneman A. Special issue: Pediatric imaging. Acta Radiol 2013; 54: 982. doi: 10.1258/ar.2012.12a008
- Davis JT, Kwatra N, Schooler GR. Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging 2016; 44: 783–93. doi: 10.1002/jmri.25259
- Shapira-Zaltsberg G, Wilson N, Trejo Perez E, Abbott L, Dinning S, Kapoor C, et al. Whole-body diffusion-weighted MRI compared to (18 F)FDG PET/CT in initial staging and therapy response assessment of Hodgkin lymphoma in pediatric patients. Can Assoc Radiol J 2020; 71: 217–25. doi: 10.1177/0846537119888380
- Bozdağ M, Er A, Çinkooğlu A. Histogram Analysis of ADC Maps for differentiating brain metastases from different histological types of lung cancers. Can Assoc Radiol J 2021; 72: 271–8. doi: 10.1177/0846537120933837
- Juan CJ, Lin SC, Li YH, Chang CC, Jeng YH, Peng HH, et al. Improving interobserver agreement and performance of deep learning models for segmenting acute ischemic stroke by combining DWI with optimized ADC thresholds. Eur Radiol 2022; 32: 5371–81. doi: 10.1007/s00330-022-08633-6
- Lee SM, Lee KW, Kim MA, Song YS, Goo JM, Park CM. Serial texture analyses on ADC maps for evaluation of antiangiogenic therapy in rat breast cancer. Anticancer Res 2019; 39: 1875–82. doi: 10.21873/anticanres.13295
- Manetta R, Palumbo P, Gianneramo C, Bruno F, Arrigoni F, Natella R, et al. Correlation between ADC values and Gleason score in evaluation of prostate cancer: multicentre experience and review of the literature. Gland Surg 2019; 8(Suppl 3): S216–22. doi: 10.21037/gs.2019.05.02
- Schober P, Boer C, Schwarte LA. Correlation Coefficients: appropriate use and interpretation. Anesth Analg 2018; 126: 1763–8. doi: 10.1213/ANE.0000000000002864
- Schober P, Mascha EJ, Vetter TR. Statistics from A (Agreement) to Z (z Score): a guide to interpreting common measures of association, agreement, diagnostic accuracy, effect size, heterogeneity, and reliability in medical research. Anesth Analg 2021; 133: 1633–41. doi: 10.1213/ANE.0000000000005773
- Landis JR, Koch GG. Koch, The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159–74. PMID: 843571
- Kamal NM, Elsaban K. Role of 18f-fdg-pet/ct in assessment of pediatric Hodgkin's lymphoma. Q J Nucl Med Mol Imaging 2021; 65: 376–85. doi: 10.23736/S1824-4785.16.02695-9
- Qiu L, Chen Y, Wu J. The role of 18F-FDG PET and 18F-FDG PET/CT in the evaluation of pediatric Hodgkin's lymphoma and non-Hodgkin's lymphoma. Hell J Nucl Med 2013; 16: 230–6. doi: 10.1967/s0024499100091
- Verhagen MV, Menezes LJ, Neriman D, Watson TA, Punwani S, Taylor SA, et al. (18)F-FDG PET/MRI for staging and interim response assessment in pediatric and adolescent Hodgkin lymphoma: a prospective study with (18) F-FDG PET/CT as the reference standard. J Nucl Med 2021; 62: 1524–30. doi: 10.2967/jnumed.120.260059
- Chu C, Gao Y, Lan X, Lin J, Thomas AM, Li S. Stem-cell therapy as a potential strategy for radiation-induced brain injury. Stem Cell Rev Rep 2020; 16: 639–49. doi: 10.1007/s12015-020-09984-7
- Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C, Rajaraman P, et al. Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J Clin 2012; 62: 75–100. doi: 10.3322/caac.21132
- Kollmann C, Jenderka KV, Moran CM, Draghi F, Jimenez Diaz JF, Sande R. EFSUMB clinical safety statement for diagnostic ultrasound - (2019 revision). Ultraschall Med 2020; 41: 387–9. doi: 10.1055/a-1010-6018
- Albano D, Bruno A, Patti C, Micci G, Midiri M, Tarella C, et al. Whole-body magnetic resonance imaging (WB-MRI) in lymphoma: state of the art. Hematol Oncol 2020; 38: 12–21. doi: 10.1002/hon.2676
- Galia M, Albano D, Tarella C, Patti C, Sconfienza LM, Mulè A, et al. Whole-body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol 2018; 28: 1187–93. doi: 10.1007/s00330-017-5071-x
- Spijkers S, Littooij AS, Kwee TC, Tolboom N, Beishuizen A, Bruin MCA, et al. Whole-body MRI versus an FDG-PET/CT-based reference standard for staging of paediatric Hodgkin lymphoma: a prospective multicentre study. Eur Radiol 2021; 31: 1494–504. doi: 10.1007/s00330-020-07182-0
- Kıvrak AS, Paksoy Y, Erol C, Koplay M, Özbek S, Kara F. Comparison of apparent diffusion coefficient values among different MRI platforms: a multi-center phantom study. Diagn Interv Radiol 2013; 19: 433–7. doi: 10.5152/dir.2013.13034
- Hoang-Dinh A, Nguyen-Quang T, Bui-Van L, Gonindard-Melodelima C, Souchon R, Rouvière O. Reproducibility of apparent diffusion coefficient measurement in normal prostate peripheral zone at 1.5T MRI. Diagn Interv Imaging 2022; 103: 545–54. doi: 10.1016/j.diii.2022.06.001
- Newitt DC, Zhang Z, Gibbs JE, Partridge SC, Chenevert TL, Rosen MA, et al. Test-retest repeatability and reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn Reson Imaging 2019; 49: 1617–28. doi: 10.1002/jmri.26539
- Sadinski M, Medved M, Karademir I, Wang S, Peng Y, Jiang, et al. Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate. Abdom Imaging 2015; 40: 2523–8. doi: 10.1007/s00261-015-0396-x