Have a personal or library account? Click to login
Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro Cover

Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro

Open Access
|Jul 2020

References

  1. Orlowski S, Belehradek J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. J Biochem Pharmacol Res 1988; 3: 4727-33. doi: 10.1016/0006-2952(88)90344-9
  2. Mir LM. Bases and rationale of the electrochemotherapy. EJC Suppl 2006; 4: 38-44. doi: 0.1016/j.ejcsup.2006.08.005
  3. Scheffer HJ, Nielsen K, De Jong MC, Van Tilborg AJM, Vieveen JM, Bouwman A, et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014 25: 997-1011. doi: 10.1016/j.jvir.2014.01.028
  4. Phillips M, Maor E, Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 2010; 132: 091003. doi: 10.1115/1.4001882
  5. Davalos RV, Mir LM, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 3: 223-31. doi: 10.1007/s10439-005-8981-8
  6. Chen X, Ren Z, Zhu T, Zhang X, Peng Z, Xie H, et al. Electric ablation with irreversible electroporation (IRE) in vital hepatic structures and follow-up investigation. Sci Rep 2015; 5: 16233. doi: 10.1038/srep16233
  7. Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62: 4-20. doi: 10.1109/TBME.2014.2367543
  8. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14: 1237-43. doi: 10.1038/sj.cdd.4402148
  9. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Exp Teratol 1973; 7: 253-66. doi: 10.1002/tera.1420070306
  10. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 2018; 25: 486-541. doi: 10.1038/s41418-017-0012-4
  11. Batista Napotnik T, Rebersek M, Vernier PT, Mali B, Miklavcic D. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 2016; 110: 1-12. doi: 10.1016/j.bioelechem.2016.02.011
  12. Beebe SJ. Regulated and apoptotic cell death after nanosecond electroporation. In: Miklavčič D, editor. Handbook of electroporation Heidelberg: Springer International Publishing; 2017. p. 511-28. doi: 10.1007/978-3-319-32886-7_146
  13. Chai W, Zhang W, Wei Z, Xu Y, Shi J, Luo X, et al. Irreversible electroporation of the uterine cervix in a rabbit model. Biomed Microdevices 2017; 19: 103. doi: 10.1007/s10544-017-0248-2
  14. Kim HB, Sung CK, Baik KY, Moon KW, Kim HS, Yi JH, et al. Changes of apoptosis in tumor tissues with time after irreversible electroporation. Biochem Biophys Res Commun 2013; 435: 651-6. doi: 10.1016/j.bbrc.2013.05.039
  15. Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlation. Technol Cancer Res Treat 2007; 6: 287-93. doi: 10.1177/153303460700600404
  16. Lee EW, Wong D, Tafti BA, Prieto V, Totonchy M, Hilton J, et al. Irreversible electroporation in eradication of rabbit VX2 liver tumor. J Vasc Interv Radiol 2012; 23: 833-40. doi: 10.1016/j.jvir.2012.02.017
  17. Zhang Z, Li W, Procissi D, Tyler P, Omary RA, Larson AC. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine 2014; 9: 1181-92. doi: 10.2217/nnm.13.72
  18. José A, Sobrevals L, Ivorra A, Fillat C. Irreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse models. Cancer Lett 2012; 317: 16-23. doi: 10.1016/j.canlet.2011.11.004
  19. Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One 2007; 2: e1135. doi: 10.1371/journal.pone.0001135
  20. Zhang Y, Lyu C, Liu Y, Lv Y, Chang TT, Rubinsky B. Molecular and histological study on the effects of non-thermal irreversible electroporation on the liver. Biochem Biophys Res Commun 2018; 500: 665-70. doi: 10.1016/j.bbrc.2018.04.132
  21. López-Alonso B, Hernáez A, Sarnago H, Naval A, Güemes A, Junquera C, et al. Histopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generator. Sci Rep 2019; 9: 2467. doi: 10.1038/s41598-019-39433-6
  22. Nuccitelli R, Berridge JC, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of murine tumors triggers a cd8-dependent inhibition of secondary tumor growth. PLoS One 2015; 10: e0134364. doi: 10.1371/journal.pone.0134364
  23. Nuccitelli R, McDaniel A, Anand S, Cha J, Mallon Z, Berridge J, et al. Nanopulse stimulation is a physical modality that can trigger immunogenic tumor cell death. J Immunother Cancer 2017; 5: 32. doi: 10.1186/s40425-017-0234-5
  24. Guo S, Jing Y, Burcus NI, Lassiter BP, Tanaz R, Heller R, et al. Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 2018; 142: 629-40. doi: 10.1002/ijc.31071
  25. Rossi A, Pakhomova ON, Mollica PA, Casciola M, Mangalanathan U, Pakhomov AG, et al. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer. Cancers 2019; 11: 2034. doi: 10.3390/cancers11122034
  26. Calvet CY, Famin D, André FM, Mir LM. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncoimmunology 2014; 3: e28131. doi: 10.4161/onci.28131
  27. Ringel-Scaia VM, Beitel-White N. Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44: 112-25. doi: 10.1016/j.ebiom.2019.05.036
  28. Schultheis K, Smith, TRF, Kiosses WB, Kraynyak KA, Wong A, Oh J, et al. Delineating the cellular mechanisms associated with skin electroporation. Hum Gene Ther Methods 2018; 29: 177-88. doi: 10.1089/hgtb.2017.105
  29. Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun 2019; 10: 1-14. doi: 10.1038/s41467-019-08782-1
  30. Vogl TJ, Wissniowski TT, Naguib NNN, Hammerstingl RM, Mack MG, Münch S, et al. Activation of tumor-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol Immunother 2019; 58: 1557-63. doi: 10.1007/s00262-009-0663-1
  31. Bulvik BE, Rozenblum N, Gourevich S, Ahmed M, Andriyanov AV, Galun E, et al. Irreversible electroporation versus radiofrequency ablation: a comparison of local and systemic effects in a small-animal model. Radiology 2016; 280: 413-24. doi: 10.1148/radiol.2015151166
  32. White SB, Zhang Z, Chen J, Gogineni VR, Larson AC. Early immunologic response of irreversible electroporation versus cryoablation in a rodent model of pancreatic cancer. J Vasc Interv Radiol 2018; 29: 1764-9. doi: 10.1016/j.jvir.2018.07.009
  33. Scheffer HJ, Stam AGM, Geboers B, Vroomen LGPH, Ruarus A, de Bruijn B, et al. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019; 8: 1652532. doi: 10.1080/2162402X.2019.1652532
  34. Pandit H, Hong YK, Li Y, Rostas J, Pulliam Z, Li P, et al. Evaluating the regulatory immunomodulation effect of irreversible electroporation (ire) in pancreatic adenocarcinoma. Ann Surg Oncol 2019; 26: 800-6. doi: 10.1245/s10434-018-07144-3
  35. Calvet CY, Mir LM. The promising alliance of anti-cancer electrochemotherapy with immunotherapy. Cancer Metastasis Rev 2016; 35: 165-77. doi: 10.1007/s10555-016-9615-3
  36. Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, et al. Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 2015; 64: 1315-27. doi: 10.1007/s00262-015-1724-2
  37. Serša G, Miklavcic D, Cemazar M, Belehradek J, Jarm T, Mir LM. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti- tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem Bioenerg 1997; 43: 279-83. doi: 10.1016/S0302-4598(96)05194-X
  38. Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am J Pathol 2004; 165: 1853-63. doi: 10.1016/S0002-9440(10)63238-5
  39. Gerlini G, Di Gennaro P, Mariotti G, Urso C, Chiarugi A, Pimpinelli N, et al. Indoleamine 2,3-dioxygenase cells correspond to the BDCA2 plasmacytoid dendritic cells in human melanoma sentinel nodes. J Investig Dermatol 2010; 130: 898-901. doi: 10.1038/jid.2009.307
  40. Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, et al. High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology 2020; 295: 192190. doi: 10.1148/radiol.2020192190
  41. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med 2019; 23: 4854-65. doi: 10.1111/jcmm.14356
  42. Alnaggar M, Lin M, Mesmar A, Liang S, Qaid A, Xu K, et al. Allogenic natural killer cell immunotherapy combined with irreversible electroporation for stage iv hepatocellular carcinoma: survival outcome. Cell Physiol Biochem 2018; 48: 1882-93. doi: 10.1159/000492509
  43. Yang Y, Qin Z, Du D, Wu Y, Qiu S, Mu F, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol 2019; 42: 48-59. doi: 10.1007/s00270-018-2069-y
  44. Lin M, Liang S, Wang X, Liang Y, Zhang M, Chen J. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (Stage III/IV) pancreatic cancer: a promising treatment. J Cancer Res Clin Oncol 2017; 143: 2607-18. doi: 10.1007/s00432-017-2513-4
  45. Diercks GFH, Kluin PM. Basic principles of the immune system and autoimmunity. In: Jonkman FM, editor. Autoimmune bullous diseases. Heidelberg: Springer International Publishing; 2016. p. 3-12. doi: 10.1007/978-3-319-23754-1_1
  46. Kellie S, Al-Mansour Z. Overview of the immune system. In: Skwarczynski M, Toth I, editors. Micro- and nanotechnology in vaccine development Elsevier Inc; 2017. p. 63-81. doi: 10.1016/B978-0-323-39981-4.00004-X
  47. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010; 125: S3. doi: 10.1016/j.jaci.2009.12.980
  48. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw 2018; 18: e27. doi: 10.4110/in.2018.18.e27
  49. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54-61. doi: 10.1038/nm1523
  50. Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci 2015; 131: 251-79. doi: 10.1016/bs.pmbts.2014.11.014
  51. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81:1-5. doi: 10.1189/jlb.0306164
  52. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M. Science in medicine Alarmins : awaiting a clinical response. J Clin Invest 2012; 122: 2711-9. doi: 10.1172/JCI62423.tification
  53. Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243: 191-205. doi: 10.1111/j.1600-065X.2011.01040.x
  54. Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger - damage control by the immune system. J Leukoc Biol 2012; 92: 539-51. doi: 10.1189/jlb.0212072
  55. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18: 1028-40. doi: 10.1038/nm.2807
  56. Straino S, Di Carlo A, Mangoni A, De Mori R, Guerra L, Maurelli R. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol 2008; 128: 1545-53. doi: 10.1038/ sj.jid.5701212
  57. Yang S, Xu L, Yang T, Wang F. High-mobility group box-1 and its role in angiogenesis. J Leukoc Biol 2014; 95: 563-74. doi: 10.1189/jlb.0713412
  58. Zampell JC, Yan A, Avraham T, Andrade V, Malliaris S, Aschen S, et al. Temporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedema. Am J Physiol Cell Physiol 2011; 300: 1107-21. doi: 10.1152/ajpcell.00378.2010
  59. Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol 2013; 8: 241-76. doi: 10.1146/annurevpathol-020712-163930
  60. Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 1990; 58: 1089-98. doi: 10.1016/S0006-3495(90)82451-6
  61. Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim Biophys Acta Biomembr 2016; 1858: 2689-98. doi: 10.1016/j.bbamem.2016.06.024
  62. Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – an overview. Bioelectrochemistry 2018; 120: 166-82. doi: 10.1016/j.bioelechem.2017.12.005
  63. Scuderi M, Rebersek M, Miklavcic D, Dermol-Cerne J. The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro. Radiol Oncol 2019; 53: 194-205. doi: 10.2478/raon-2019-0025
  64. O’Brien MA, Power DG. Clover AJP, Bird B, Soden DM, Forde PF. Local tumour ablative therapies: opportunities for maximising immune engagement and activation. Biochim Biophys Acta 2014; 184: 510-23. doi: 10.1016/j.bbcan.2014.09.005
  65. Babiuk S, Baca-Estrada ME, Foldvari M, Middleton DM, Rabussay D, Widera G, et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 2004; 110: 1-10. doi: 10.1016/j.jbiotec.2004.01.015
  66. Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 2006; 13: 320-7. doi: 10.1016/j.ymthe.2005.08.005
  67. Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, et al. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 2008; 8: 1645-57. doi: 10.1517/14712598.8.11.1645
  68. Bessis N, Garcia Cozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 2004; 11(Suppl 1): S10-7.. doi: 10.1038/sj.gt.3302364
  69. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28: 709-22. doi: 10.1016/j.ymthe.2020.01.001
  70. Rols MP, Teissié J. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 1990; 58: 1089-98. doi: 10.1016/S0006-3495(90)82451-6
  71. Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 2007; 5: 127-36. doi: 10.1089/adt.2006.053
  72. Wood KV. The bioluminescence advantage. [cited 2020 May 12]. Available at: https://worldwide.promega.com/resources/pubhub/enotes/the-bioluminescence-advantage/
  73. Falzoni S, Donvito G, Di Virgilio F. Detecting adenosine triphosphate in the pericellular space. Interface Focus 2013; 3: 2012. doi: 10.1089/adt.2006.053
  74. Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, et al. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003; 116: 2099-110. doi: 10.1242/jcs.00420
  75. Hansen EL, Sozer EB, Romeo S, Frandsen SK, Vernier PT, Gehl J. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electriamount strength. PLoS One 2015; 10: e0122973. doi: 10.1371/journal.pone.0122973
  76. Ashdown CP, Johns SC, Aminov E, Unanian M, Connacher W, Friend J, et al. Pulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viability. Biophys J 2020; 118: 1552-63. doi: 10.1016/j.bpj.2020.02.013
  77. Krause KH, Michalak M. Calreticulin. Cell 1997; 88: 439-43. doi: 10.1016/s0092-8674(00)81884-x
  78. Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 2005; 37: 260-6. doi: 10.1016/j.biocel.2004.02.030
  79. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J 2009; 28: 578-90. doi: 10.1038/emboj.2009.1
  80. Kranz P, Neumann F, Wolf A, Classen F, Pompsch M, Ocklenburg T, et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis 2017; 8: e2986. doi: 10.1038/cddis.2017.369
  81. Hou W, Zhang Q, Yan Z, Chen R, Zeh HJ, Kang R, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4: e966. doi: 10.1038/cddis.2013.493
  82. Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunolog 2012; 144: 32-40. doi: 10.1016/j.clim.2012.04.006
  83. Shinohara K, Toné S, Ejima T, Ohigashi T, Ito A. Quantitative distribution of DNA, RNA, histone and proteins other than histone in mammalian cells, nuclei and a chromosome at high resolution observed by scanning transmission soft x-ray microscopy (stxm). Cells 2019; 8: 164. doi: 10.3390/cells8020164
  84. Mackenzie RJ. DNA vs. RNA – 5 key differences and comparison. Technology Networks. [cited 2020 Jun 9]. Available at: https://www.technologynet-works.com/genomics/lists/what-are-the-key-differences-between-dna-and-rna-296719
  85. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516-21. doi: 10.1038/nature01991
  86. Shi Y, Galusha SA, Rock KL. Cutting Edge: elimination of an endogenous adjuvant reduces the activation of cd8 t lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 2006; 176: 3905-8. doi: 10.4049/jimmunol.176.7.3905
  87. Miklavcic D, Semrov D, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and fo: DNA electrotransfer for gene therapy. Biochim Biophys Acta Gen Subj 2000; 1523: 73-83. doi: 10.1016/S0304-4165(00)00101-X
  88. Zmuc J, Gasljevic G, Sersa G, Edhemovic I, Boc N, Seliskar A, et al. Large liver blood vessels and bile ducts are not damaged by electrochemotherapy with bleomycin in pigs. Sci Rep 2019; 9: 3649. doi: 10.1038/s41598-019-40395-y
DOI: https://doi.org/10.2478/raon-2020-0047 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 317 - 328
Submitted on: Jun 18, 2020
|
Accepted on: Jul 7, 2020
|
Published on: Jul 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Tamara Polajzer, Tomaz Jarm, Damijan Miklavcic, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.