Have a personal or library account? Click to login
Perfusion magnetic resonance imaging changes in normal appearing brain tissue after radiotherapy in glioblastoma patients may confound longitudinal evaluation of treatment response Cover

Perfusion magnetic resonance imaging changes in normal appearing brain tissue after radiotherapy in glioblastoma patients may confound longitudinal evaluation of treatment response

Open Access
|Jun 2018

References

  1. Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. <em>Radiat Oncol J</em> 2014; <bold>32</bold>: 103-15. <pub-id pub-id-type="doi"><a href="https://doi.org/10.3857/roj.2014.32.3.103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3857/roj.2014.32.3.103</a></pub-id>
  2. Price RE, Langford LA, Jackson EF, Stephens LC, Tinkey PT, Ang KK. Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brain. <em>J Med Primatol</em> 2001; <bold>30</bold>: 81-7. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1034/j.1600-0684.2001.300202.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1034/j.1600-0684.2001.300202.x</a></pub-id>
  3. Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. <em>Neuroimaging Clin N Am</em> 2009; <bold>19</bold>: 657-68. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.nic.2009.08.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.nic.2009.08.014</a></pub-id>
  4. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. <em>Front Oncol</em> 2012; <bold>2</bold>: 73. <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fonc.2012.00073" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fonc.2012.00073</a></pub-id>
  5. Cao Y, Tsien CI, Sundgren PC, Nagesh V, Normolle D, Buchtel H, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. <em>Clin Cancer Res</em> 2009; <bold>15</bold>: 1747-54. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1158/1078-0432.CCR-08-1420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1158/1078-0432.CCR-08-1420</a></pub-id>
  6. Adair JC, Baldwin N, Kornfeld M, Rosenberg GA. Radiation-induced blood-brain barrier damage in astrocytoma: relation to elevated gelatinase B and urokinase. <em>J Neurooncol</em> 1999; <bold>44</bold>: 283-9.
  7. Fuss M, Wenz F, Scholdei R, Essig M, Debus J, Knopp MV, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. <em>Int J Radiat Oncol Biol Phys</em> 2000; <bold>48</bold>: 53-8. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/S0360-3016(00)00590-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0360-3016(00)00590-3</a></pub-id>
  8. Jakubovic R, Sahgal A, Ruschin M, Pejovic-Milic A, Milwid R, Aviv RI. Non tumor perfusion changes following stereotactic Radiosurgery to brain metastases. <em>Technol Cancer Res Treat</em> 2014. <pub-id pub-id-type="doi"><a href="https://doi.org/10.7785/tcrtex-press.2013.600279" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7785/tcrtex-press.2013.600279</a></pub-id>
  9. Lee MC, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. <em>J Magn Reson Imaging</em> 2005; <bold>21</bold>: 683-93. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jmri.20298" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jmri.20298</a></pub-id>
  10. Petr J, Platzek I, Seidlitz A, Mutsaerts HJ, Hofheinz F, Schramm G, et al. Early and late effects of radiochemotherapy on cerebral blood flow in glioblastoma patients measured with non-invasive perfusion MRI. <em>Radiother Oncol</em> 2016; <bold>118</bold>: 24-8. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.radonc.2015.12.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.radonc.2015.12.017</a></pub-id>
  11. Price SJ, Jena R, Green HA, Kirkby NF, Lynch AG, Coles CE, et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. <em>Clin Oncol</em> (<em>R Coll Radiol</em>) 2007; <bold>19</bold>: 577-87. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.clon.2007.04.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.clon.2007.04.010</a></pub-id>
  12. Taki S, Higashi K, Oguchi M, Tamamura H, Tsuji S, Ohta K, et al. Changes in regional cerebral blood flow in irradiated regions and normal brain after stereotactic radiosurgery. <em>Ann Nucl Med</em> 2002; <bold>16</bold>: 273-7.
  13. Weber MA, Gunther M, Lichy MP, Delorme S, Bongers A, Thilmann C, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. <em>Invest Radiol</em> 2003; <bold>38</bold>: 712-8. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1097/01.rli.0000084890.57197.54" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1097/01.rli.0000084890.57197.54</a></pub-id>
  14. Wenz F, Rempp K, Hess T, Debus J, Brix G, Engenhart R, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. <em>AJR Am J Roentgenol</em> 1996; <bold>166</bold>: 187-93. <pub-id pub-id-type="doi"><a href="https://doi.org/10.2214/ajr.166.1.8571873" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2214/ajr.166.1.8571873</a></pub-id>
  15. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. <em>Radiology</em> 2008; <bold>249</bold>: 601-13. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1148/radiol.2492071659" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1148/radiol.2492071659</a></pub-id>
  16. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjornerud A, Vangel MG, Gerstner ER, et al.Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. <em>Transl Oncol</em> 2015; <bold>8</bold>: 137-46. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.tranon.2015.03.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tranon.2015.03.002</a></pub-id>
  17. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. <em>Radiology</em> 2008; <bold>247</bold>: 490-8. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1148/radiol.2472070898" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1148/radiol.2472070898</a></pub-id>
  18. Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. <em>Neuroimaging Clin N Am</em> 2009; <bold>19</bold>: 527-57. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.nic.2009.08.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.nic.2009.08.007</a></pub-id>
  19. Jarnum H, Steffensen EG, Knutsson L, Frund ET, Simonsen CW, Lundbye-Christensen S, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. <em>Neuroradiology</em> 2010; <bold>52</bold>: 307-17. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00234-009-0616-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00234-009-0616-6</a></pub-id>
  20. Choi SH, Jung SC, Kim KW, Lee JY, Choi Y, Park SH, et al. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis. <em>J Neurooncol</em> 2016; <bold>128</bold>: 185-94. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11060-016-2102-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11060-016-2102-4</a></pub-id>
  21. Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, et al. Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. <em>Neurosurgery</em> 2012; <bold>70</bold>: 234-43; discussion 43-4. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1227/NEU.0b013e318223f5a7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1227/NEU.0b013e318223f5a7</a></pub-id>
  22. Tensaouti F, Khalifa J, Lusque A, Plas B, Lotterie JA, Berry I, et al. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma. <em>Neuroradiology</em> 2017; <bold>59</bold>: 1013-20. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00234-017-1899-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00234-017-1899-7</a></pub-id>
  23. Bjornerud A, Emblem KE. A fully automated method for quantitative cerebral hemodynamic analysis using DSC-MRI. <em>J Cereb Blood Flow Metab</em> 2010; <bold>30</bold>: 1066-78. Epub 2010/01/21. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/jcbfm.2010.4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/jcbfm.2010.4</a></pub-id>
  24. Knutsson L, Stahlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. <em>MAGMA</em> 2010; <bold>23</bold>: 1-21. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10334-009-0190-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10334-009-0190-2</a></pub-id>
  25. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. <em>Magn Reson Med</em> 2006; <bold>55</bold>: 524-31. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/mrm.20759" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mrm.20759</a></pub-id>
  26. Petersen ET, Zimine I, Ho YC, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. <em>Br J Radiol</em> 2006; <bold>79</bold>: 688-701. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1259/bjr/67705974" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1259/bjr/67705974</a></pub-id>
  27. Emblem KE, Bjornerud A. An automatic procedure for normalization of cerebral blood volume maps in dynamic susceptibility contrast-based glioma imaging. <em>AJNR Am J Neuroradiol</em> 2009; <bold>30</bold>: 1929-32. <pub-id pub-id-type="doi"><a href="https://doi.org/10.3174/ajnr.A1680" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3174/ajnr.A1680</a></pub-id>
  28. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. <em>N Engl J Med</em> 2005; <bold>352</bold>: 987-96. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1056/NEJMoa043330" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1056/NEJMoa043330</a></pub-id>
  29. Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. <em>J Magn Reson Imaging</em> 2005; <bold>22</bold>: 710-7. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/jmri.20460" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/jmri.20460</a></pub-id>
  30. Simonsen CZ, Ostergaard L, Vestergaard-Poulsen P, Rohl L, Bjornerud A, Gyldensted C. CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. <em>J Magn Reson Imaging</em> 1999; <bold>9</bold>: 342-7. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/(SICI)1522-2586(199902)9:2&lt" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/(SICI)1522-2586(199902)9:2&lt</a>;342::AID-JMRI29&gt;3.0.CO;2-B</pub-id>
  31. Emblem KE, Bjornerud A, Mouridsen K, Borra RJ, Batchelor TT, Jain RK, et al. T(1)- and T(2)(<sup>∗</sup>)-dominant extravasation correction in DSC-MRI: part II-predicting patient outcome after a single dose of cediranib in recurrent glioblastoma patients. <em>J Cereb Blood Flow Metab</em> 2011; <bold>31</bold>: 2054-64. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/jcbfm.2011.39" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/jcbfm.2011.39</a></pub-id>
  32. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. <em>Magn Reson Med</em> 1996; <bold>36</bold>: 726-36. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/mrm.1910360511" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mrm.1910360511</a></pub-id>
  33. Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. <em>Magn Reson Med</em> 2003; <bold>50</bold>: 1237-47. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/mrm.10643" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mrm.10643</a></pub-id>
  34. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. <em>AJNR Am J Neuroradiol</em> 2006; <bold>27</bold>: 859-67.
  35. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A. Automatic vessel removal in gliomas from dynamic susceptibility contrast imaging. <em>Magn Reson Med</em> 2009; <bold>61</bold>: 1210-7. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/mrm.21944" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mrm.21944</a></pub-id>
  36. Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. <em>IEEE Trans Med Imaging</em> 2010; 29: 196-205. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/TMI.2009.2035616" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TMI.2009.2035616</a></pub-id>
  37. White CM, Pope WB, Zaw T, Qiao J, Naeini KM, Lai A, et al. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. <em>J Neuroimaging</em> 2014; <bold>24</bold>: 23-30. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1552-6569.2012.00703.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1552-6569.2012.00703.x</a></pub-id>
  38. Jonsson C, Pagani M, Johansson L, Thurfjell L, Jacobsson H, Larsson SA. Reproducibility and repeatability of 99Tcm-HMPAO rCBF SPET in normal subjects at rest using brain atlas matching. <em>Nucl Med Commun</em> 2000; <bold>21</bold>: 9-18.
  39. Li YQ, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. <em>Cancer Res</em> 2003; <bold>63</bold>: 5950-6.
  40. Lyubimova N, Hopewell JW. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. <em>Br J Radiol</em> 2004; <bold>77</bold>: 488-92. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1259/bjr/15169876" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1259/bjr/15169876</a></pub-id>
  41. Cao Y, Tsien CI, Shen Z, Tatro DS, Ten Haken R, Kessler ML, et al. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. <em>J Clin Oncol</em> 2005; <bold>23</bold>: 4127-36. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1200/JCO.2005.07.144" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1200/JCO.2005.07.144</a></pub-id>
  42. Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT. Vascular damage after fractionated whole-brain irradiation in rats. <em>Radiat Res</em> 2005; <bold>164</bold>: 662-8.
  43. Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. <em>Radiat Res</em> 2006; <bold>166</bold>: 495-503. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1667/RR3597.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1667/RR3597.1</a></pub-id>
  44. Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. <em>Mol Interv</em> 2004; <bold>4</bold>: 273-84. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1124/mi.4.5.7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1124/mi.4.5.7</a></pub-id>
  45. Yuan H, Gaber MW, Boyd K, Wilson CM, Kiani MF, Merchant TE. Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. <em>Int J Radiat Oncol Biol Phys</em> 2006; <bold>66</bold>: 860-6. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijrobp.2006.06.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijrobp.2006.06.043</a></pub-id>
  46. Prust MJ, Jafari-Khouzani K, Kalpathy-Cramer J, Polaskova P, Batchelor TT, Gerstner ER, et al. Standard chemoradiation for glioblastoma results in progressive brain volume loss. <em>Neurology</em> 2015; <bold>85</bold>: 683-91. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1212/WNL.0000000000001861" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1212/WNL.0000000000001861</a></pub-id>
  47. Karunamuni RA, Moore KL, Seibert TM, Li N, White NS, Bartsch H, et al. Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. <em>Radiother Oncol</em> 2016; <bold>118</bold>: 29-34. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.radonc.2016.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.radonc.2016.01.003</a></pub-id>
  48. Petr J, Platzek I, Hofheinz F, Mutsaerts H, Asllani I, van Osch MJP, et al. Photon vs. proton radiochemotherapy: effects on brain tissue volume and perfusion. <em>Radiother Oncol</em> 2018. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.radonc.2017.11.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.radonc.2017.11.033</a></pub-id>
  49. Karunamuni R, Bartsch H, White NS, Moiseenko V, Carmona R, Marshall DC, et al. Dose-dependent cortical thinning after partial brain irradiation in highgrade glioma. <em>Int J Radiat Oncol Biol Phys</em> 2016; <bold>94</bold>: 297-304. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijrobp.2015.10.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijrobp.2015.10.026</a></pub-id>
  50. Andre JB, Nagpal S, Hippe DS, Ravanpay AC, Schmiedeskamp H, Bammer R, et al. Cerebral blood flow changes in glioblastoma patients undergoing bevacizumab treatment are seen in both tumor and normal brain. [Abstract] <em>Neuroradiol J</em> 2015; <bold>28</bold>: 112-9. <pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/1971400915576641" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/1971400915576641</a></pub-id>
  51. Mouridsen K, Emblem K, Bjørnerud A, Jennings D, Sorensen AG. Subject-specific AIF optimizes reproducibility of perfusion parameters in longitudinal DSC-MRI. <em>Proc Intl Soc Mag Reson Med</em> 2011; <bold>19</bold>: 376.
DOI: https://doi.org/10.2478/raon-2018-0022 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 143 - 151
Submitted on: Jan 17, 2018
Accepted on: Apr 4, 2018
Published on: Jun 6, 2018
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 Markus Fahlström, Erik Blomquist, Tufve Nyholm, Elna-Marie Larsson, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.