References
- Ab Rahman A.A., Abdul-Maulud K.N., Mohd F.A., Jaafar O., Tahar K.N., 2017. Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach. IOP Conf. Series: Materials Science and Engineering 270: 1–6. DOI 10.1088/1757-899X/270/1/012032.
- Agisoft, 2020. Configuration parameters. Online: agisoft.freshback.com/support/solutions/articles/3100 (accessed November 1, 2020).
- Ajayi O.G., Palmer M., Salubi A.A., 2018. Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment 11: 220–230. DOI 10.1016/j.rsase.2018.07.007.
- Ajayi O.G., Salubi A.A., Angbas A.F., Odigure M.G., 2017. Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. International Journal of Remote Sensing 8–10(38): 3113–3134.
- Akwaowo U.E., Aniekan E.E., Okon U., 2019. A comparative analysis of volumetric stockpile from UAV photogrammetry and total station data. SSRG International Journal of Geoinformatics and Geological Science 6(2).
- Arango C., Morales C.A., 2015. Comparison between multicopter UAV and total station for estimating stockpile volumes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W4.
- Baiocchi V., Dominici D., Mormile M., 2013. UAV application in post – seismic environment, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2, 21–25. DOI 10.5194/isprsarchives-XL-1-W2-212013.
- Blistan P., Jacko S., Kovanič Ľ., Kondela J., Pukanská K., Bartoš K., 2020. TLS and SfM approach for bulk density determination of excavated heterogeneous raw materials. Minerals 10: 174. DOI 10.3390/min10020174
- Borgelt S.C., Harrison J.D., Sudduth K.A., Birrell S.J., 1996. Evaluation of GPS for applications in precision agriculture. Applied Engineering in Agriculture 12(6): 633–638.
- Bremer M., Sass O., 2012. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 138: 49–60.
- Ding G., Wu Q., Yao Y.D., 2015. Byzantine attack and defense in cognitive radio networks: A survey. IEEE communication survey and tutorials 17(3): 1342–1363.
- DJI, 2019. Mavic Air Specs. Online: www.dji.com/mobile/mavic-air (accessed November 1, 2020).
- Eisenbeiß H., 2009. UAV Photogrammetry. Institute of Geodesy and Photogrammetry (PhD Dissertation), ETH Zurich, Switzerland.
- Fitzpatrick B.P., 2015. Unmanned Aerial System for survey and mapping: cost comparison of UAS versus traditional methods of data acquisition (Masters Dissertation). Faculty of USC Graduate School, University of Southern California.
- Ioanna S., Apostolos T., 2015. The use of Unmanned Aerial Systems (UAS) in Agriculture. Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, Kavala, Greece: 730–736.
- Kavanagh B., Glenn Bird S.J., 1996. Surveying: Principle and Application. 3rd Edition, Pearson.
- Kociuba W., 2017. Analysis of geomorphic changes and quantification of sediment budgets of a small Arctic valley with the application of repeat TLS surveys. Zeitschrift für Geomorphologie 61(2): 105–120.
- Kociuba W., 2020. Different paths for developing terrestrial LiDAR data for comparative analyses of topographic surface changes. Applied Sciences 10: 7409.
- Kovanič Ľ., Blistan P., Urban R., Štroner M., Blišťanová M., Bartoš K., Pukanská K., 2020. Analysis of the Suitability of High-Resolution DEM Obtained Using ALS and UAS (SfM) for the Identification of Changes and Monitoring the Development of Selected Geohazards in the Alpine Environment – A Case Study in High Tatras, Slovakia. Remote Sensing. 12(23): 3901.
- Lin L.S., 2004. Application of GPS RTK and total station systems on dynamic monitoring land use. Proceedings of the ISPRS Congress Istanbul, Turkey.
- Marco C., Aracena P., Chung W., 2012. Improving accuracy in earthwork volume estimation for proposed forest roads using a high-resolution digital elevation model. Croatian Journal of Forest Engineering 33(1): 125–142.
- Nourbakhshbeidokhti S., Kinoshita A.M., Chin A., Florsheim J.L., 2019. A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance. Remote Sensing 11: 586. DOI 10.3390/rs11050586
- Pflipsen B., 2006. Volume Computation: A comparison of Total Station versus Laser Scanner. (Masters Dissertation). Department of Technology and Built Environment, University of Gävle, Sweden.
- Propeller, 2018. How stockpile volume measurement works in drone surveying with propeller. Online: www.propelleraero.com/blog/how-stockpile-volume-measurement-works-in-drone-surveying/ (accessed September 5, 2019).
- Raeva P.L., Filipova S.L., Filipov D.G., 2016. Volume computation of a stockpile – A study case of comparing GPS and UAV measurement in an open pit quarry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, XXIII.
- Šašak J., Gallay M., Kaňuk J., Hofierka J., Minár J., 2019. Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sensing 11(18): 2154.
- Siebert S., Teizer J., 2014. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction 41: 1–14.
- Siriba D.N., Matara S.M., Musyoka S.M., 2015. Improvement of volume estimation of stockpile of earthworks using a concave hull-footprint. Micro Macro & Mezzo Geo Information 5: 11–24. UDC: 528.718.021.7:624.1.
- Stalin L.J., Gnanaprakasam R.P.C., 2017. Volume Calculation from UAV based DEM. International Journal of Engineering Research & Technology 6(6): 126–128.
- Urban R., Štroner M., Blistan P., Kovanič Ľ., Patera M., Jacko S., Ďuriška I., Kelemen M., Szabo S., 2019. The suitability of UAS for mass movement monitoring caused by torrential rainfall – a study on the Talus Cones in the Alpine terrain in high Tatras, Slovakia. ISPRS International Journal of Geo-Information 8: 317. DOI 10.3390/ijgi8080317.