Have a personal or library account? Click to login
Qubit Geometry through Holomorphic Quantization Cover

References

  1. P. W. Shor (1994). Proceedings 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, USA), 124–134.
  2. A. W. Harrow and A. Montanaro (1997). “Quantum computational supremacy.” Nature, 549, 14.
  3. S. Wiesner (1983). “Conjugate coding.” ACM Sigact News, 15, 1.
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters (1993). “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.” Physical Review Letters, 70, 1895.
  5. V. Giovannetti, S. Llyod, and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit.” Science, 306, 5700.
  6. M. A Nielsen, and I.L. Chuang (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press.
  7. T. W. B. Kibble (1979). “Geometrization of quantum mechanics.” Communications in Mathematical Physics, 65, 189–201.
  8. D. C. Brody, and L. P. Hughston, (2002). “Geometric quantum mechanics.” Journal of Geophysics, 38, 1.
  9. J. Anandan, and Y. Aharonov, (1990). “Geometry of quantum evolution.” Physical Review Letters, 65, 1697.
  10. A. Ashtekar, and T. A Schilling, (1995). “Geometry of quantum mechanics.” AIP Conference Proceedings, 342, 1.
  11. E. Ercolessi, R. Fioresi, and T. Weber (2024). “The geometry of quantum computing.” International Journal of Geometric Methods in Modern Physics, 21, 10.
  12. R. Mosseri, and R. Dandoloff (2001). “Geometry of entangled states, bloch sphere and hopf fibrations.” Journal of Physics A: Mathematical and General, 34, 10243.
  13. R. Mosseri (2006). Topology in Condensed Matter Physic. Springer Berlin Heidelberg New York, 87–203.
  14. I.Bengtsson and K. Zyczkowski (2017). Geometry of Quantum States - An Introduction to Quantum Entanglement 2nd ed. Cambridge University Press.
  15. I. Bengtsson, J. Brännlund, and K. Zyczkowsi (2002). “CPn or entanglement illustrated.” International Journal of Modern Physics A, 17, 31.
  16. F. Frescura and B. Hiley (1981). “Geometric interpretation of The Pauli Spinor.” American Journal of Physics, 49, 152.
  17. M. Kus, and K. Zyczkowski (2001). “Geometry of entangled states.” Physical Review A, 63, 032307.
  18. P. Levay (2004). “The geometry of entanglement: metrics, connections and the geometric phase.” Journal of Physics A: Mathematical and General, 37, 1821.
  19. J. M. Isidro (2004). “Quantum states from tangent vectors.” Modern Physics Letters A, 19, 31.
  20. R. Loll (1992). Mathematical Aspects of Classical Field Theory (AMS), pp. 503–530.
  21. E. Witten (1991). “Geometric quantization of Chern-Simons Gauge theory.” Journal of Differential Geometry, 3, 3.
  22. U. Chabaud and S.Mehraban (2022). “Holomorphic representation of quantum computations,” Quantum, 6, 831.
  23. I. Bjelakovic and W. Stulpe (2005). “The projective Hilbert space as a classic phase space for nonrelativistic quantum dynamics.” International Journal of Theoretical Physics, 44.
  24. H. Urbantke (1991). “Two-level quantum systems: states, phases, and holonomy.” American Journal of Physics, 59, 6.
  25. J. W. Lee, et al. (2002). “Qubit geometry and conformal mapping.” Quantum Information Processing, 1.
  26. C.J. Isham (1984). Relativity, Groups and Topology II, B.S. DeWitt and R. Stora (eds.). North-Holland, 1061–1290.
  27. N.M.J. Woodhouse (1997). Geometric Quantization, 2nd ed., Clarendon Press.
  28. C. J. Isham and A. C. Kakas (1984). “A group theoretical approach to the canonical quantisation of gravity. I. Construction of the canonical group.” Classical and Quantum Gravity, 1, 6.
  29. C. J. Isham and A. C. Kakas (1984). “A group theoretical approach to the canonical quantisation of gravity. II. Unitary representations of the canonical group.” Classical and Quantum Gravity, 1, 6.
  30. C. J. Isham and N. Linden (1988). “A group theoretic quantisation of strings on Tori.” Classical and Quantum Gravity, 5, 6.
  31. H. Zainuddin (1989). “Group-theoretic Quantization of a Particle On a Torus in a Constant Magnetic Field.” Physical Review D, 40, 636.
  32. A. Bouketir (2000). “Group-theoretic quantisation on spheres and quantum hall effect.” (Unpublished) PhD thesis, Universiti Putra Malaysia, Malaysia.
  33. M. F. Umar, N. M. Shah and H. Zainuddin (2018). “Two-dimensional plane, modified symplectic structure and quantization.” Jurnal Fizik Malaysia, 39, 2.
  34. C. Benevides, and A. Reyes (2004). Geometric and Topological Methods for Quantum Field Theory. Cambridge University Press, 344–367.
  35. R. A. Silva and T. Jacobson (2021). “Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole.” Journal of Physics A: Mathematical and Theoretical, 54, 235303.
  36. R. A. Silva and T. Jacobson (2023). “Causal diamonds in (2+1)-dimensional quantum gravity.” Physical Review D, 107, 2.
  37. C. Brif (1997). “SU (2) and SU (1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states.” International Journal of Theoretical Physics, 36.
  38. K. Fujii (2002). arXiv:quant-ph/0112090.
  39. S. T. Ali and M. Englis (2005). “Quantization methods: A guide for physicists and analysts.” Reviews in Mathematical Physics, 17, 4.
  40. P. Andrews (1988). “The classification of surfaces.” The American Mathematical Monthly, 95, 9.
  41. I. Vaisman (1981). “The Bott obstruction to the existence of nice polarizations,” Minnesota Math, 92.
  42. G.A. Jones and I. Singerman (1987). Complex Functions - An Algebraic and Geometric Viewpoint. Cambridge University Press.
  43. A.H.A. Sumadi (2024). “Canonical group quantization on non-cotangent bundle phase space and its application in quantum information theory.” (Unpublished) PhD thesis, Universiti Putra Malaysia.
  44. D. Gurarie (2008). Symmetries and Laplacians - Introduction to Harmonic Analysis, Group Representations and Applications. Dover.
  45. C.P. Boyer, E.G. Kalnins and P. Winternitz (1985). “Separation of variables for the Hamilton-Jacobi equation on complex projective spaces.” SIAM Journal on Mathematical Analysis, 16.
  46. J. Mostovoy (1998). “Geometry of truncated symmetric products and real roots of real polynomials.” Bulletin of the London Mathematical Society, 30.
  47. P. Blagojevic, V. Grujic and R. Zivaljevic (2004). arXiv:math/0408417v1.
DOI: https://doi.org/10.2478/qic-2025-0022 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 385 - 396
Submitted on: May 13, 2025
|
Accepted on: Aug 3, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ahmad Hazazi Ahmad Sumadi, Nurisya Mohd Shah, Umair Abdul Halim, Hishamuddin Zainuddin, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.