References
- P. W. Shor (1994). Proceedings 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, USA), 124–134.
- A. W. Harrow and A. Montanaro (1997). “Quantum computational supremacy.” Nature, 549, 14.
- S. Wiesner (1983). “Conjugate coding.” ACM Sigact News, 15, 1.
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters (1993). “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.” Physical Review Letters, 70, 1895.
- V. Giovannetti, S. Llyod, and L. Maccone (2004). “Quantum-enhanced measurements: Beating the standard quantum limit.” Science, 306, 5700.
- M. A Nielsen, and I.L. Chuang (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press.
- T. W. B. Kibble (1979). “Geometrization of quantum mechanics.” Communications in Mathematical Physics, 65, 189–201.
- D. C. Brody, and L. P. Hughston, (2002). “Geometric quantum mechanics.” Journal of Geophysics, 38, 1.
- J. Anandan, and Y. Aharonov, (1990). “Geometry of quantum evolution.” Physical Review Letters, 65, 1697.
- A. Ashtekar, and T. A Schilling, (1995). “Geometry of quantum mechanics.” AIP Conference Proceedings, 342, 1.
- E. Ercolessi, R. Fioresi, and T. Weber (2024). “The geometry of quantum computing.” International Journal of Geometric Methods in Modern Physics, 21, 10.
- R. Mosseri, and R. Dandoloff (2001). “Geometry of entangled states, bloch sphere and hopf fibrations.” Journal of Physics A: Mathematical and General, 34, 10243.
- R. Mosseri (2006). Topology in Condensed Matter Physic. Springer Berlin Heidelberg New York, 87–203.
- I.Bengtsson and K. Zyczkowski (2017). Geometry of Quantum States - An Introduction to Quantum Entanglement 2nd ed. Cambridge University Press.
- I. Bengtsson, J. Brännlund, and K. Zyczkowsi (2002). “CPn or entanglement illustrated.” International Journal of Modern Physics A, 17, 31.
- F. Frescura and B. Hiley (1981). “Geometric interpretation of The Pauli Spinor.” American Journal of Physics, 49, 152.
- M. Kus, and K. Zyczkowski (2001). “Geometry of entangled states.” Physical Review A, 63, 032307.
- P. Levay (2004). “The geometry of entanglement: metrics, connections and the geometric phase.” Journal of Physics A: Mathematical and General, 37, 1821.
- J. M. Isidro (2004). “Quantum states from tangent vectors.” Modern Physics Letters A, 19, 31.
- R. Loll (1992). Mathematical Aspects of Classical Field Theory (AMS), pp. 503–530.
- E. Witten (1991). “Geometric quantization of Chern-Simons Gauge theory.” Journal of Differential Geometry, 3, 3.
- U. Chabaud and S.Mehraban (2022). “Holomorphic representation of quantum computations,” Quantum, 6, 831.
- I. Bjelakovic and W. Stulpe (2005). “The projective Hilbert space as a classic phase space for nonrelativistic quantum dynamics.” International Journal of Theoretical Physics, 44.
- H. Urbantke (1991). “Two-level quantum systems: states, phases, and holonomy.” American Journal of Physics, 59, 6.
- J. W. Lee, et al. (2002). “Qubit geometry and conformal mapping.” Quantum Information Processing, 1.
- C.J. Isham (1984). Relativity, Groups and Topology II, B.S. DeWitt and R. Stora (eds.). North-Holland, 1061–1290.
- N.M.J. Woodhouse (1997). Geometric Quantization, 2nd ed., Clarendon Press.
- C. J. Isham and A. C. Kakas (1984). “A group theoretical approach to the canonical quantisation of gravity. I. Construction of the canonical group.” Classical and Quantum Gravity, 1, 6.
- C. J. Isham and A. C. Kakas (1984). “A group theoretical approach to the canonical quantisation of gravity. II. Unitary representations of the canonical group.” Classical and Quantum Gravity, 1, 6.
- C. J. Isham and N. Linden (1988). “A group theoretic quantisation of strings on Tori.” Classical and Quantum Gravity, 5, 6.
- H. Zainuddin (1989). “Group-theoretic Quantization of a Particle On a Torus in a Constant Magnetic Field.” Physical Review D, 40, 636.
- A. Bouketir (2000). “Group-theoretic quantisation on spheres and quantum hall effect.” (Unpublished) PhD thesis, Universiti Putra Malaysia, Malaysia.
- M. F. Umar, N. M. Shah and H. Zainuddin (2018). “Two-dimensional plane, modified symplectic structure and quantization.” Jurnal Fizik Malaysia, 39, 2.
- C. Benevides, and A. Reyes (2004). Geometric and Topological Methods for Quantum Field Theory. Cambridge University Press, 344–367.
- R. A. Silva and T. Jacobson (2021). “Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole.” Journal of Physics A: Mathematical and Theoretical, 54, 235303.
- R. A. Silva and T. Jacobson (2023). “Causal diamonds in (2+1)-dimensional quantum gravity.” Physical Review D, 107, 2.
- C. Brif (1997). “SU (2) and SU (1,1) algebra eigenstates: A unified analytic approach to coherent and intelligent states.” International Journal of Theoretical Physics, 36.
- K. Fujii (2002). arXiv:quant-ph/0112090.
- S. T. Ali and M. Englis (2005). “Quantization methods: A guide for physicists and analysts.” Reviews in Mathematical Physics, 17, 4.
- P. Andrews (1988). “The classification of surfaces.” The American Mathematical Monthly, 95, 9.
- I. Vaisman (1981). “The Bott obstruction to the existence of nice polarizations,” Minnesota Math, 92.
- G.A. Jones and I. Singerman (1987). Complex Functions - An Algebraic and Geometric Viewpoint. Cambridge University Press.
- A.H.A. Sumadi (2024). “Canonical group quantization on non-cotangent bundle phase space and its application in quantum information theory.” (Unpublished) PhD thesis, Universiti Putra Malaysia.
- D. Gurarie (2008). Symmetries and Laplacians - Introduction to Harmonic Analysis, Group Representations and Applications. Dover.
- C.P. Boyer, E.G. Kalnins and P. Winternitz (1985). “Separation of variables for the Hamilton-Jacobi equation on complex projective spaces.” SIAM Journal on Mathematical Analysis, 16.
- J. Mostovoy (1998). “Geometry of truncated symmetric products and real roots of real polynomials.” Bulletin of the London Mathematical Society, 30.
- P. Blagojevic, V. Grujic and R. Zivaljevic (2004). arXiv:math/0408417v1.