Have a personal or library account? Click to login
Qubit Geometry through Holomorphic Quantization Cover

Figures & Tables

Figure 1.

Stereographic projection from the north pole onto the plane x3 = 0.
Stereographic projection from the north pole onto the plane x3 = 0.

Figure 2.

Holomorphic wavefunction from local section of ℒ.
Holomorphic wavefunction from local section of ℒ.

Figure 3.

Fixed points of quantum gate wavefunction on ℂP1
Fixed points of quantum gate wavefunction on ℂP1

Geometric interpretation of quantum gates via their holomorphic wavefunctions, including their action on the Riemann sphere, fixed points, and induced transformations_

Common GateSymbolGates’ WavefunctionsFixed PointsCorresponding Eigenstates
[ 1001 ]\left[ {\matrix{ 1 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill \cr } } \right]ψ(z)Every point on ℂP1Every point on ℂP1
[ 0110 ]\left[ {\matrix{ 0 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill \cr } } \right]ψ(1z)\psi \left( {{1 \over z}} \right){±1}{ (11),(11) }\left\{ {\left( \matrix{ 1 \cr 1 \cr} \right),\left( \matrix{ 1 \cr - 1 \cr} \right)} \right\}
[ 0ii0 ]\left[ {\matrix{ 0 & { - i} \cr i & 0 \cr } } \right]ψ(1z)\psi \left( { - {1 \over z}} \right)i}{ (0i),(i0) }\left\{ {\left( \matrix{ 0 \cr i \cr} \right),\left( \matrix{ - i \cr 0 \cr} \right)} \right\}
[ 1001 ]\left[ {\matrix{ 1 & 0 \cr 0 & { - 1} \cr } } \right]ψ(z){∞, 0}{ (10),(01) }\left\{ {\left( \matrix{ 1 \cr 0 \cr} \right),\left( \matrix{ 0 \cr 1 \cr} \right)} \right\}
12[ 1111 ]{1 \over {\sqrt 2 }}\left[ {\matrix{ 1 & 1 \cr 1 & { - 1} \cr } } \right]ψ(z+1z1)\psi \left( {{{z + 1} \over {z - 1}}} \right){1±2}\{ 1 \pm \sqrt 2 \} { (1±21) }\left\{ {\left( \matrix{ 1 \pm \sqrt 2 \cr 1 \cr} \right)} \right\}
[ 100i ]\left[ {\matrix{ 1 \hfill & 0 \hfill \cr 0 \hfill & i \hfill \cr } } \right]ψ(iz){0}{ (10),(0i) }\left\{ {\left( \matrix{ 1 \cr 0 \cr} \right),\left( \matrix{ 0 \cr i \cr} \right)} \right\}
[ 100eiπ/4 ]\left[ {\matrix{ 1 & 0 \cr 0 & {{e^{i\pi /4}}} \cr } } \right]12ψ(z+iz){1 \over {\sqrt 2 }}\psi (z + iz){0}{ (10),(0eiπ/4) }\left\{ {\left( \matrix{ 1 \cr 0 \cr} \right),\left( \matrix{ 0 \cr {e^{i\pi /4}} \cr} \right)} \right\}
[ cosθ2isinθ2isinθ2cosθ2 ]\left[ {\matrix{ {\cos {\theta \over 2}} & { - i\sin {\theta \over 2}} \cr { - i\sin {\theta \over 2}} & {\cos {\theta \over 2}} \cr } } \right]ψ(cosθ12z+isinθ12isinθ12z+cosθ12)\psi \left( {{{\cos {{{\theta _1}} \over 2}z + i\sin {{{\theta _1}} \over 2}} \over {i\sin {{{\theta _1}} \over 2}z + \cos {{{\theta _1}} \over 2}}}} \right){±1}Similar as X-gate
[ cosθ2sinθ2sinθ2cosθ2 ]\left[ {\matrix{ {\cos {\theta \over 2}} & { - \sin {\theta \over 2}} \cr {\sin {\theta \over 2}} & {\cos {\theta \over 2}} \cr } } \right]ψ(cosθ22zsinθ22sinθ22z+cosθ22)\psi \left( {{{\cos {{{\theta _2}} \over 2}z - \sin {{{\theta _2}} \over 2}} \over {\sin {{{\theta _2}} \over 2}z + \cos {{{\theta _2}} \over 2}}}} \right)i}Similar as Y-gate
[ eiθ200eiθ2 ]\left[ {\matrix{ {{e^{{{ - i\theta } \over 2}}}} & 0 \cr 0 & {{e^{{{i\theta } \over 2}}}} \cr } } \right]ψ(e3z){∞, 0}Similar as Z-gate
DOI: https://doi.org/10.2478/qic-2025-0022 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 385 - 396
Submitted on: May 13, 2025
|
Accepted on: Aug 3, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ahmad Hazazi Ahmad Sumadi, Nurisya Mohd Shah, Umair Abdul Halim, Hishamuddin Zainuddin, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.