References
- P.W. Shor (1995). “Scheme for reducing decoherence in quantum computer memory.” Physical Review A, 52, R2493(R). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.R2493
- A.G. Fowler, M. Mariantoni, J.M. Martinis and A.N. Cleland (2012). “Surface codes: Towards practical large-scale quantum computation.” Physical Review A, 86, 032324. https://doi.org/10.1103/PhysRevA.86.032324
- M.R.A. Newman, “Repetition Code.” Prefetch, https://prefetch.eu/know/concept/repetition-code/
- S. Krinner et al. (2021). “Realizing repeated quantum error correction in a distance-three surface code.” https://arxiv.org/abs/2112.03708
- D. Gottesman (2009). “An introduction to quantum error correction and fault-tolerant quantum computation.” https://arxiv.org/abs/0904.2557
- A.M. Steane (2006). “A tutorial on quantum error correction.” in International School of Physics “Enrico Fermi.” IOS Press. https://www2.physics.ox.ac.uk/sites/default/files/ErrorCorrectionSteane06.pdf
- J. Preskill (1999). “Quantum error correction.” Quantum Computation Lecture Notes, Chapter 7, http://theory.caltech.edu/~preskill/ph219/index.html
- J. Watrous (2006). “Quantum error correction (Lecture 16).” CPSC 519/619, University of Calgary. https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.16.pdf
- S.M. Girvin (2023). “Introduction to quantum error correction and fault tolerance.” SciPost Physics Lecture Notes, 70, https://scipost.org/SciPostPhysLectNotes.70/pdf
- R. Padma Priya, A. Baradeswaran (2018). “An efficient simulation of quantum error correction codes.” Alexandria Engineering Journal, 57, 3, https://www.sciencedirect.com/science/article/pii/S1110016817302089
- A. Chatterjee, K. Phalak, S. Ghosh, “Quantum error correction for dummies.” arXiv:2304.08678v2 [quant-ph], https://arxiv.org/abs/2304.08678
- J.R. Wootton and D. Loss, “A repetition code of 15 qubits.” arXiv:1709.00990v3 [quant-ph], https://arxiv.org/abs/1709.00990
- M. Kastoryano, “Quantum error correction.” Lecture Notes, University of Cologne, 2018–2019, https://www.thp.uni-koeln.de/kastoryano/ExSheets/Notes_v6.pdf
- M. Vahabi, E. Rahimi, P. Lyakhov, A.N. Bahar, K. Wahid, A. Otsuki, “Novel quantum-dot cellular automata-based gate designs for efficient reversible computing.” Sustainability, 15: 3, 2265. https://www.researchgate.net/publication/367453693
- M. Vahabi, P. Lyakhov, A.N. Bahar, A. Otsuki, K. Wahid, “Novel reversible comparator design in quantum dot-cellular automata with power dissipation analysis.” Applied Sciences, 12: 15, 7846. https://www.researchgate.net/publication/362498318
- M. Vahabi, E. Rahimi, P. Lyakhov, “Efficient design and implementation of a reversible switched network in quantum cellular automata technology.” Journal of King Saud University – Computer and Information Sciences, 36: 3, 101910. https://www.researchgate.net/publication/377243945
- L. Tang, T. Kong, and S. Seyedi (2025). “A new design of an efficient configurable circuit based on quantum-dot technology for digital image processing.” Analog Integrated Circuits and Signal Processing, 112. https://link.springer.com/article/10.1007/s10470-025-02337-9
- S. Seyedi and H. Abdoli (2025). “A fault tolerant CSA in QCA technology for IoT devices.” Scientific Reports. 15, 3396. https://www.nature.com/articles/s41598-025-85933-z
- M. Gao, J. Wang, S. Fang, J. Nan, and L. Daming (2020). “A new nano design for implementation of a digital comparator based on quantum-dot cellular automata.” International Journal of Theoretical Physics, 60, 2358–2367. https://link.springer.com/article/10.1007/s10773-020-04499-w
- S. Seyedi and H. Abdoli (2024). “Efficient design and implementation of approximate FA, FS, and FA/S circuits for nanocomputing in QCA.” Plos One, 19: 9: e0310050. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310050
- C. Chamberland et al. (2022) “Building a fault-tolerant quantum computer using concatenated cat codes.” PRX Quantum, 3, 010329„ https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.3.010329