Have a personal or library account? Click to login
A Resource-Efficient 4-Qubit Circuit for Bit-Flip Error Correction Using Feynman Gates Cover

A Resource-Efficient 4-Qubit Circuit for Bit-Flip Error Correction Using Feynman Gates

Open Access
|Aug 2025

Figures & Tables

Figure 1.

Gate-Level Diagram—Part 1 of the Proposed Error Correction Circuit (Correction of q[2] and q[1]).
Gate-Level Diagram—Part 1 of the Proposed Error Correction Circuit (Correction of q[2] and q[1]).

Figure 2.

Gate-Level Diagram—Part 2 of the Proposed Circuit (Verification and Adjustment of q[0]).
Gate-Level Diagram—Part 2 of the Proposed Circuit (Verification and Adjustment of q[0]).

Figure 3.

Gate-Level Diagram—Part 3 of the Proposed Circuit (Final Correction Based on Auxiliary State).
Gate-Level Diagram—Part 3 of the Proposed Circuit (Final Correction Based on Auxiliary State).

Figure 4.

Repeated Subcircuit Block (Used in All Three Parts of the Circuit).
Repeated Subcircuit Block (Used in All Three Parts of the Circuit).

Figure 5.

Block Diagram of the Full 4-Qubit Bit-Flip Error Correction Architecture.
Block Diagram of the Full 4-Qubit Bit-Flip Error Correction Architecture.

Matrix representation of a 3-qubit layout result_

11101000
00000000
00000000
00000000
00000000
00000000
00000000
00010111

Substructure-Block Truth Table_

Column1Column2Column3
RowInput StateOutput State
R100001000
R200010001
R300100010
R400110011
R501000100
R601010101
R701100110
R801111111
R910000000
R1010011001
R1110101010
R1210111011
R1311001100
R1411011101
R1511101110
R1611110111

Substructure-Block Unitary Matrix_

0000000010000000
0100000000000000
0010000000000000
0001000000000000
0000100000000000
0000010000000000
0000001000000000
0000000000000001
1000000000000000
0000000001000000
0000000000100000
0000000000010000
0000000000001000
0000000000000100
0000000000000010
0000000100000000

Simulation results showing fidelity comparison across all test cases_

Error StateTarget StateDetection AccuracyCorrection Fidelity
|001〉|000〉100%100%
|010〉|000〉100%100%
|100〉|000〉100%100%
|110〉|111〉100%100%
|101〉|111〉100%100%
|011〉|111〉100%100%
|111〉|111〉100%100%
|000〉|000〉100%100%

Matrix representation of a 3-qubit layout process_

(000|000)(000|000)(000|000)(000|111)(000|000)(000|111)(000|111)(000|111)
(001|000)(001|000)(001|000)(001|111)(001|000)(001|111)(001|111)(001|111)
(010|000)(010|000)(010|000)(010|111)(010|000)(010|111)(010|111)(010|111)
(011|000)(011|000)(011|000)(011|111)(011|000)(011|111)(011|111)(011|111)
(100|000)(100|000)(100|000)(100|111)(100|000)(100|111)(100|111)(100|111)
(101|000)(101|000)(101|000)(101|111)(101|000)(101|111)(101|111)(101|111)
(110|000)(110|000)(110|000)(110|111)(110|000)(110|111)(110|111)(110|111)
(111|000)(111|000)(111|000)(111|111)(111|000)(111|111)(111|111)(111|111)

Comparison of Error-Correcting Circuit Approaches_

FeatureProposed CircuitShor Code (9-Qubit)Steane Code (7-Qubit)
Total Qubits Required497
Correctable Error TypesBit-flipBit + PhaseBit + Phase
Ancilla Qubits Used1≥3≥2
Gate Types UsedCNOT, NOTCNOT, H, S, TCNOT, H, S, T
Circuit Depth (approx.)LowHighHigh
Implementation ComplexityLowHighHigh
Detection Accuracy (simulated)100%100% (theoretical)100% (theoretical)
Fidelity (ideal simulation)100%100%100%
Simulation Tool UsedIBM ComposerTheoreticalTheoretical

Truth table of the intended operation_

Column1Column2Column3
Input StateExpected Output State
0|000>|000>
1|001>|000>
2|010>|000>
3|011>|111>
4|100>|000>
5|101>|111>
6|110>|111>
7|111>|111>
DOI: https://doi.org/10.2478/qic-2025-0019 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 344 - 355
Submitted on: May 13, 2025
Accepted on: Jun 27, 2025
Published on: Aug 22, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Dimitrios Gryllakis, Kyriakos N. Sgarbas, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.