References
- D.J. Griffiths and D.F. Schroeter (2018). Introduction to Quantum Mechanics, Cambridge University Press, 3rd edition.
- A.M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D.A. Spielman (2003). Exponential Algorithmic Speedup by a Quantum Walk, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC ’03, 59–68. ACM, New York.
- A.M. Childs and J. Goldstone (2004). “Spatial search by quantum walk”. Physical Review A, 70, 022314.
- E. Farhi, J. Goldstone and S. Gutmann (2008). “A quantum algorithm for the Hamiltonian NAND tree”. Theory of Computing, 4, 169–190.
- J. Kempe (2003). “Quantum random walks: An introductory overview”. Contemporary Physics, 44, 307–327.
- A. Ambainis (2003). “Quantum walks and their algorithmic applications”. International Journal of Quantum Information, 01, 507–518.
- S.E. Venegas-Andraca (2012). “Quantum walks: A comprehensive review”. Quantum Information Processing, 1015–1106.
- G.D. Molfetta (2024). Quantum Walks, Limits, and Transport Equations, Bristol: Institute of Physics Publishing.
- T.G. Wong (2022). “Unstructured search by random and quantum walk”. Quantum Information & Computing, 22, 53–85.
- L.K. Grover (1996). A Fast Quantum Mechanical Algorithm for Database Search, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, 212–219. ACM, New York.
- S.N. Bose (1924). “Plancks gesetz und lichtquantenhypothese”. Zeitschrift für Physik, 26.
- A. Einstein (1924). Zur quantentheorie des einatomigen idealen gases, Wiss: Sitzungsber. K. Preuss. Akad., 261.
- A. Einstein (1925). Quantentheorie des einatomigen idealen gases. Zweite abhandlung, Wiss: Sitzungsber. Preuss. Akad., 3.
- E. Gross (1961). “Structure of a quantized vortex in boson systems”. Il Nuovo Cimento (1955–1965), 20, 454–477.
- L. Pitaevskii (1961). “Vortex lines in an imperfect Bose gas”. Soviet Physics JETP-USSR, 13, 451–454.
- F. Dalfovo, S. Giorgini, L.P. Pitaevskii and S. Stringari (1999). “Theory of Bose-Einstein condensation in trapped gases”. Reviews of Modern Physics, 71, 463-512.
- O. Morsch and M. Oberthaler (2006). “Dynamics of Bose-Einstein condensates in optical lattices”. Reviews of Modern Physics, 78, 179-215.
- J. Rogel-Salazar (2013). “The Gross-Pitaevskii equation and Bose–Einstein condensates”. European Journal of Physics, 34, 247.
- M. Ebrahimi Kahou and D.L. Feder (2013). “Quantum search with interacting Bose-Einstein condensates”. Physical Review A, 88, 032310.
- D.A. Meyer and T.G. Wong (2013). “Nonlinear quantum search using the Gross-Pitaevskii equation”. New Journal of Physics, 15, 063014.
- J. Janmark, D.A. Meyer and T.G. Wong (2014). “Global symmetry is unnecessary for fast quantum search”. Physical Review Letters, 112, 210502.
- J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell and C.E. Wieman (2001). “Controlled collapse of a Bose-Einstein condensate”. Physical Review Letters, 86, 4211–4214.
- T. Chen, N. Pavlovic and N. Tzirakis (2010). “Energy conservation and blowup of solutions for focusing Gross–Pitaevskii hierarchies”. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire, 27, 1271–1290.
- D. Mendelson, A.R. Nahmod, N. Pavlovic and G. Staffilani (2019). “An infinite sequence of conserved quantities for the cubic Gross-Pitaevskii hierarchy on R”. Transactions of American Mathematical Society, 371, 5179–5202.
- H. Koch and X. Liao (2021). “Conserved energies for the one dimensional Gross-Pitaevskii equation”. Advances in Mathematics, 377, 107467.
- H. Koch and X. Liao (2023). “Conserved energies for the one dimensional Gross-Pitaevskii equation: Low regularity case”. Advances in Mathematics, 420, 108996.