Have a personal or library account? Click to login
Variational Quantum Framework for Nonlinear PDE Constrained Optimization Using Carleman Linearization Cover

Variational Quantum Framework for Nonlinear PDE Constrained Optimization Using Carleman Linearization

Open Access
|Jul 2025

References

  1. A. Surana and A. Gnanasekaran (2024). “Variational quantum framework for partial differential equation constrained optimization”. arXiv preprint arXiv:2405.16651.
  2. H. Antil, D.P. Kouri, M.-D. Lacasse and D. Ridzal (2018). Frontiers in PDE-constrained Optimization, volume 163. Springer.
  3. L.T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van BloemenWaanders (2003) “Large-scale pde-constrained optimization: an introduction”, in Large-scale PDE-Constrained Optimization. Springer, pp. 3–13.
  4. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich (2008). Optimization with PDE Constraints, volume 23. Springer Science & Business Media.
  5. K. Kowalski and W.-H. Steeb (1991). Nonlinear Dynamical Systems and Carleman Linearization. Singapore: World Scientific.
  6. A. Amini, C. Zheng, Q. Sun, and N. Motee (2025). “Carleman linearization of nonlinear systems and its finite-section approximations”. Discrete and Continuous Dynamical Systems-B, 30: 2. 577–603.
  7. M. Forets and A. Pouly (2017). “Explicit error bounds for Carleman linearization.” arXiv preprint arXiv:1711.02552.
  8. J.-P. Liu, H. Ø. Kolden, H.K. Krovi, N.F. Loureiro, K. Trivisa, and A.M. Childs. (2021). “Efficient quantum algorithm for dissipative nonlinear differential equations”. Proceedings of the National Academy of Sciences, 118: 35, e2026805118.
  9. A. Surana, A. Gnanasekaran, and T. Sahai (2024). “An efficient quantum algorithm for simulating polynomial dynamical systems”. Quantum Information Processing, 23: 3, 1–22.
  10. X. Li, X. Yin, N. Wiebe, J. Chun, G. K. Schenter, M. S. Cheung, and J. M”ulmenst”adt (2025). “Potential quantum advantage for simulation of fluid dynamics”. Physical Review Research 7, 013036.
  11. J. Penuel, A. Katabarwa, P.D Johnson, C. Farquhar, Y. Cao, and M.C. Garrett (2024). “Feasibility of accelerating incompressible computational fluid dynamics simulations with fault-tolerant quantum computers”. arXiv preprint arXiv:2406.06323.
  12. R. Demirdjian, D. Gunlycke, C.A. Reynolds, J.D. Doyle, and S. Tafur. (2022). “Variational quantum solutions to the advection–diffusion equation for applications in fluid dynamics”. Quantum Information Processing, 21: 9, 322.
  13. C. B.-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles. (2023). “Variational quantum linear solver.” Quantum, 7, 1188.
  14. A. Gnanasekaran and A. Surana. (2024). “Efficient variational quantum linear solver for structured sparse matrices.” In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), volume 1. IEEE, pp. 199–210.
  15. M. A. Nielsen and I. L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  16. J.C. D. Reyes (2015). Numerical PDE-Constrained Optimization. Springer.
  17. L. Hantzko, L. Binkowski, and S. Gupta. (2024). “Tensorized pauli decomposition algorithm.” Physica Scripta, 99: 8, 085128.
  18. H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen (2021). “Variational quantum algorithm for the poisson equation.” Physical Review A, 104: 2, 022418.
  19. P. Costa, P. Schleich, M.ES Morales, and D.W Berry (2023). “Further improving quantum algorithms for nonlinear differential equations via higher-order methods and rescaling.” arXiv preprint arXiv:2312.09518.
  20. S. Sim, P.D. Johnson, and A. Aspuru-Guzik (2019). “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms.” Advanced Quantum Technologies, 2: 12, 1900070.
  21. A. Pellow-Jarman, I. Sinayskiy, A. Pillay, and F. Petruccione (2021). “A comparison of various classical optimizers for a variational quantum linear solver.” Quantum Information Processing, 20: 6, 202.
  22. P.C.S. Costa, D. An, Y.l.R. Sanders, Y. Su, R. Babbush, and D.W. Berry (2022). “Optimal scaling quantum linear-systems solver via discrete adiabatic theorem.” PRX quantum, 3: 4, 040303.
  23. D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher, and L. Wossnig (2018). “Quantum linear systems algorithms: a primer.” arXiv preprint arXiv:1802.08227.
  24. A.W. Harrow, A. Hassidim, and S. Lloyd (2009). “Quantum algorithm for linear systems of equations.” Physical Review Letters, 103: 15, 150502.
DOI: https://doi.org/10.2478/qic-2025-0014 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 260 - 289
Submitted on: Mar 7, 2025
Accepted on: May 6, 2025
Published on: Jul 1, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Abeynaya Gnanasekaran, Amit Surana, Hongyu Zhu, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.