Have a personal or library account? Click to login
Quantum Implementation of Non-unitary Operations with Biorthogonal Representations Cover

Quantum Implementation of Non-unitary Operations with Biorthogonal Representations

Open Access
|May 2025

References

  1. H.-P. Breuer and F. Petruccione, (2007). The Theory of Open Quantum Systems. Oxford University Press.
  2. L. H. Delgado-Granados, T. J. Krogmeier, L. M. Sager-Smith, I. Avdic, Z. Hu, M. Sajjan, M. Abbasi, S. E. Smart, P. Narang, S. Kais, A. W. Schlimgen, K. Head-Marsden and D. A. Mazziotti, (2025). “Quantum algorithms and applications for open quantum systems”. Chemical Reviews, 0, 0.
  3. C. M. Bender and S. Boettcher, (1998). “Real spectra in non-Hermitian Hamiltonians having PT symmetry”. Physical Review Letters, 80, 5243.
  4. A. Mostafazadeh, (2002). “Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”. Journal of Mathematical Physics, 43, 205.
  5. A. Mostafazadeh, (2010). “Pseudo-Hermitian representation of quantum mechanics”. International Journal of Geometric Methods in Modern Physics, 7, 1191.
  6. C.-Y. Ju, A. Miranowicz, G.-Y. Chen and F. Nori, (2019). “Non-hermitian Hamiltonians and no-go theorems in quantum information”. Physical Review A, 100, 062118.
  7. A. M. Childs and N. Wiebe, (2012). “Hamiltonian simulation using linear combinations of unitary operations”. Quantum Information & Computation, 12, 901–924.
  8. D. W. Berry, A. M. Childs and R. Kothari, (2015). “Hamiltonian simulation with nearly optimal dependence on all parameters,” in Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 792–809.
  9. H. Krovi, (2023). “Improved quantum algorithms for linear and nonlinear differential equations”. Quantum, 7, 913.
  10. G.-L. Long, (2006). “General quantum interference principle and duality computer”. Communications in Theoretical Physics, 45, 825.
  11. G.-L. Long and L. Yang (2008). “Duality computing in quantum computers”. Communications in Theoretical Physics, 50, 1303.
  12. G.-L. Long, L. Yang and C. Wang (2009). “Allowable generalized quantum gates”. Communications in Theoretical Physics, 51, 65.
  13. G.-L. Long, (2011). “Duality quantum computing and duality quantum information processing”. International Journal of Theoretical Physics, 50, 1305–1318.
  14. S.-J. Wei, D. Ruan and G.-L. Long, (2016). “Duality quantum algorithm efficiently simulates open quantum systems”. Scientific Reports, 6, 30727.
  15. C. Zheng, (2021). “Universal quantum simulation of single-qubit nonunitary operators using duality quantum algorithm”. Scientific Reports, 11, 3960. https://doi.org/10.1038/s41598-021-83521-5.
  16. A. W. Schlimgen, K. Head-Marsden, L. M. Sager, P. Narang and D. A. Mazziotti, (2021). “Quantum simulation of open quantum systems using a unitary decomposition of operators”. Physical Review Letters, 127, 270503. https://doi.org/10.1103/PhysRevLett.127.270503.
  17. N. Suri, J. Barreto, S. Hadfield, N. Wiebe, F. Wudarski and J. Marshall, (2023). “Two-unitary decomposition algorithm and open quantum system simulation”. Quantum, 7, 1002. https://doi.org/10.22331/q-2023-05-15-1002.
  18. R. Hu and S. Kais, (2020). “A quantum algorithm for evolving open quantum dynamics on quantum computing devices”. Scientific Reports, 10, 3301. https://doi.org/10.1038/s41598-020-60321-x.
  19. A. W. Schlimgen, K. Head-Marsden, L. M. Sager-Smith, P. Narang and D. A. Mazziotti, (2022). “Quantum state preparation and nonunitary evolution with diagonal operators”. Physical Review A, 106, 022414. https://doi.org/10.1103/PhysRevA.106.022414.
  20. A. W. Schlimgen, K. Head-Marsden, L. M. Sager-Smith, P. Narang and D. A. Mazziotti, Quantum simulation of open quantum systems using density-matrix purification. arXiv:2207.07112 [quant-ph]. https://doi.org/10.48550/arXiv.2207.07112.
  21. S. Jin, N. Liu and Y. Yu, (2023). “Quantum simulation of partial differential equations: Applications and detailed analysis”. Physical Review A, 108, 032603. https://doi.org/10.1103/PhysRevA.108.032603.
  22. E. Koukoutsis, K. Hizanidis, A. K. Ram and G. Vahala, (2024). “Quantum simulation of dissipation for Maxwell equations in dispersive media”. Future Generation Computer Systems, 159, 221. https://doi.org/10.1016/j.future.2024.05.028.
  23. O. M. Shalit, (2021). “Dilation theory: A guided tour”, in M. A. Bastos, L. Castro, A. Y. Karlovich (eds), Operator Theory, Functional Analysis and Applications; Springer International Publishing, pp. 551–623. https://doi.org/10.1007/978-3-030-51945-2_28.
  24. D. C. Brody, (2013). “Biorthogonal quantum mechanics”. Journal of Physics A, 47: 035305. https://doi.org/10.1088/1751-8113/47/3/035305.
  25. T. Curtright and L. Mezincescu, (2007). “Biorthogonal quantum systems”. Journal of Mathematical Physics, 48, 092106. https://doi.org/10.1063/1.2196243.
  26. K. Sim, N. Defenu, P. Molignini and R. Chitra, (2023). “Quantum metric unveils defect freezing in non-Hermitian systems”. Physical Review Letters, 131, 156501. https://doi.org/10.1103/PhysRevLett.131.156501.
  27. V. Meden, L. Grunwald and D. M. Kennes, (2023). “PT-symmetric, non-Hermitian quantum many-body physics–a methodological perspective”. Reports on Progress in Physics, 86, 124501. https://doi.org/10.1088/1361-6633/ad05f3.
  28. T.-X. Hou and W. Li, (2024). “Nonadiabatic geometric quantum computation in non-Hermitian systems”. Physical Review A, 109, 022616. https://doi.org/10.1103/PhysRevA.109.022616.
  29. M. Znojil, (2008). “Time-dependent version of crypto-hermitian quantum theory”. Physical Review D, 78, 085003. https://doi.org/10.1103/PhysRevD.78.085003
  30. A. Mostafazadeh, (2002). “Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-hermitian hamiltonians with a real spectrum”. Journal of Mathematical Physics, 43, 2814. https://doi.org/10.1063/1.1461427
  31. A. Mostafazadeh, (2003). “Is pseudo-Hermitian quantum mechanics an indefinite-metric quantum theory?” Czechoslovak Journal of Physics, 53, 1079–1084. https://doi.org/10.1023/B:CJOP.0000010537.23790.8c
  32. E. Koukoutsis, K. Hizanidis, A. K. Ram and G. Vahala, (2023). “Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media”. Physical Review A, 107, 042215. https://doi.org/10.1103/PhysRevA.107.042215
  33. Q. Zhang and B. Wu, (2018). “Lorentz quantum mechanics”. New Journal of Physics, 20, 013024. https://doi.org/10.1088/1367-2630/aa8496
  34. A. Mostafazadeh, (2004). “Pseudounitary operators and pseudounitary quantum dynamics”. Journal of Mathematical Physics, 45, 932. https://doi.org/10.1063/1.1646448
  35. E. Edvardsson, J. L. K. König and M. Stålhammar, (2023). “Biorthogonal renormalization”. arXiv:2212.06004 [quant-ph], 2023. https://arxiv.org/abs/2212.06004
  36. M. A. Nielsen and I. L. Chuang, (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
  37. X. Zhan, (2001). “Span of the orthogonal orbit of real matrices”. Linear and Multilinear Algebra, 49, 337. https://doi.org/10.1080/03081080108818704
  38. W. D. Heiss, (2004). “Exceptional points of non-Hermitian operators”. Journal of Physics A: Mathematical and Theoretical, 37, 2455. https://doi.org/10.1088/0305-4470/37/6/034
  39. W. D. Heiss, (2012). “The physics of exceptional points”. Journal of Physics A: Mathematical and Theoretical, 45, 444016. https://doi.org/10.1088/1751-8113/45/44/444016
  40. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou and D. N. Christodoulides, (2009). “Observation of PT-symmetry breaking in complex optical potentials”. Physical Review Letters, 103, 093902. https://doi.org/10.1103/PhysRevLett.103.093902
  41. H. Qin, R. Zhang, A. S. Glasser and J. Xiao, (2019). “Kelvin-Helmholtz instability is the result of parity-time symmetry breaking”. Physics of Plasmas, 26, 032102. https://doi.org/10.1063/1.5088498
  42. R. Zhang, H. Qin and J. Xiao, (2020). “PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability”. Journal of Mathematical Physics, 61, 012101. https://doi.org/10.1063/1.5117211
  43. C. Zheng, (2022). “Quantum simulation of pseudo-Hermitian-ϕ-symmetric two-level systems”. Entropy, 24, 867. https://doi.org/10.3390/e24070867
  44. O. N. Kirillov, (2021). Nonconservative Stability Problems of Modern Physics. Berlin, Boston: De Gruyter. https://doi.org/doi:10.1515/9783110655407
  45. P. Pechukas. (1994). “Reduced dynamics need not be completely positive”. Physical Review Letters, 73, 1060. https://doi.org/10.1103/PhysRevLett.73.1060
  46. P. Stelmachovič and V. Bužek, (2001). “Dynamics of open quantum systems initially entangled with environment: Beyond the Kraus representation”. Physical Review A, 64, 062106. https://doi.org/10.1103/PhysRevA.64.062106
  47. A. Shaji and E. Sudarshan, (2005). “Who’s afraid of not completely positive maps?” Physics Letters A, 341, 48. https://doi.org/10.1016/j.physleta.2005.04.029
  48. H.-P. Breuer, E.-M. Laine, J. Piilo and B. Vacchini, (2016). “Colloquium: Non-Markovian dynamics in open quantum systems”. Reviews of Modern Physics, 88, 021002. https://doi.org/10.1103/RevModPhys.88.021002
  49. J. Rembieliński and P. Caban, (2021). “Nonlinear extension of the quantum dynamical semigroup”. Quantum, 5, 420. https://doi.org/10.22331/q-2021-03-23-420
  50. A. Fring and M. H. Y. Moussa, (2016). “Unitary quantum evolution for time-dependent quasi-Hermitian systems with nonobservable Hamiltonians”. Physical Review A, 93, 042114. https://doi.org/10.1103/PhysRevA.93.042114
  51. J. Dieudonné, (1953). “On biorthogonal systems”. Michigan Mathematical Journal, 2, 7. https://doi.org/10.1307/mmj/1028989861
  52. Y. Saad, (1982). “The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems”. SIAM Journal on Numerical Analysis, 19, 485. https://doi.org/10.1137/0719031
DOI: https://doi.org/10.2478/qic-2025-0007 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 141 - 155
Submitted on: Dec 24, 2024
Accepted on: Mar 5, 2025
Published on: May 26, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Efstratios Koukoutsis, Panagiotis Papagiannis, Kyriakos Hizanidis, Abhay K. Ram, George Vahala, óscar Amaro, Llucas I Iñigo Gamiz, Dimosthenis Vallis, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.