References
- D. Ellerman (2009). “Counting distinctions: On the conceptual foundations of shannon’s information theory.” Synthese, 168: 1 May,119–149.
- 2.
B. Tamir and E. Cohen (2014). “Logical entropy for quantum states.” ArXiv.org.
http://de.arxiv.org/abs/1412.0616v2 .TamirB. CohenE. 2014 “Logical entropy for quantum states.” ArXiv.org.http://de.arxiv.org/abs/1412.0616v2 - G. Manfredi and M. R. Feix (2000). “Entropy and wigner functions.” Physical Review E, 62,4665–4674.
https://doi.org/10.1103/PhysRevE.62.4665 . - D. Ellerman (2021). New Foundations for Information Theory: Logical Entropy and Shannon Entropy. Cham, Switzerland: SpringerNature.
https://doi.org/10.1007/978-3-030-86552-8 . - D. Ellerman (2010). “The logic of partitions: Introduction to the dual of the logic of subsets.” Review of Symbolic Logic, 3: 2 June, 287–350.
- D. Ellerman (2014). “An introduction of partition logic.” Logic Journal of the IGPL, 22: 1, 94–125.
- D. Ellerman (2023). The Logic of Partitions: With Two Major Applications. Studies in Logic 101. London: College Publications.
https://www.collegepublications.co.uk/logic/?00052 . - G. Boole (1854). An Investigation of the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities. Cambridge: Macmillan and Co.
- F. William Lawvere and R. Rosebrugh (2003). Sets for Mathematics. Cambridge: Cambridge University Press.
- T. Britz, M. Mainetti and L. Pezzoli (2001). “Some operations on the family of equivalence relations”, in H. Crapo and D. Senato (eds), Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota. Milano: Springer, 445–459.
- J. P. S. Kung, G.-C. Rota, and C. H. Yan. (2009). Combinatorics: The Rota Way. New York: Cambridge University Press.
- G.-C. Rota (2001). “Twelve problems in probability no one likes to bring up”, in H. Crapo and D. Senato (eds), Algebraic Combinatorics and Computer Science. Milano: Springer, 57–93.
- A. N. Kolmogorov (1983). “Combinatorial foundations of information theory and the calculus of probabilities.” Russian Mathematical Surveys, 38: 4, 29–40.
- C. E. Shannon (1948). “A mathematical theory of communication.” Bell System Technical Journal, 27: 379–423; 623–656.
- C. E. Shannon and W. Weaver. (1964). The Mathematical Theory of Communication. Urbana: University of Illinois Press.
- L. L. Campbell (1965). “Entropy as a measure.” IEEE Transactions on Information Theory, IT-11: January, 112–114.
- U. Fano (1957). “Description of states in quantum mechanics by density matrix and operator techniques.” Reviews of Modern Physics, 29: 1, 74–93.
- G. Auletta, M. Fortunato, and G. Parisi (2009). Quantum Mechanics. Cambridge: Cambridge University Press.
- G. Rossi (2011). “Partition distances.” arXiv:1106.4579v1.
- B. Tamir and E. Cohen (2015). “A Holevo-type bound for a Hilbert Schmidt distance measure.” Journal of Quantum Information Science, 5, 127–133.
- V. Vedral and M. B. Plenio (1998). “Entanglement measures and purification procedures.” Physical Review A, 57: 3, 1619–1633.
- G.-C. Rota (1997). Indiscrete Thoughts. Boston: Birkhäuser.
- S. Roman (2008). Advanced Linear Algebra 3rd. Ed. New York: Springer Science+Business Media.
- M. Nielsen and I. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.
- G. Jaeger (2007). Quantum Information: An Overview. New York: Springer Science+Business Media.
- 26.
G. Manfredi (ed.) (2022). “Logical entropy – special issue.” 4Open, no. 5, E1.
https://doi.org/10.1051/fopen/2022005 .ManfrediG. (ed.) 2022 “Logical entropy – special issue.” 4Open 5 E1https://doi.org/10.1051/fopen/2022005 - F. Buscemi, P. Bordone, and A. Bertoni (2007). “Linear entropy as an entanglement measure in two-fermion systems.” ArXiv.org, March 2.
http://arxiv.org/abs/quant-ph/0611223v2 . - B. Tamir, I. L. Piava, Z. Schwartzman-Nowik, and E. Cohen (2022). “Quantum logical entropy: Fundamentals and general properties.” 4Open Special Issue: Logical Entropy, 5: 2, 1–14.
https://doi.org/10.1051/fopen/2021005 . - C. E. Shannon (1993). “Some topics in information theory”, in N. J. A. Sloane and A. D. Wyner (eds), Claude E. Shannon: Collected Papers. Piscataway NJ: IEEE Press, 458–459.
- C. H. Bennett (2003). “Quantum information: Qubits and quantum error correction.” International Journal of Theoretical Physics, 42: 2 February, 153–176.