Have a personal or library account? Click to login
A New Logical Measure for Quantum Information Cover
By: David Ellerman  
Open Access
|Feb 2025

References

  1. D. Ellerman (2009). “Counting distinctions: On the conceptual foundations of shannon’s information theory.” Synthese, 168: 1 May,119–149.
  2. 2. B. Tamir and E. Cohen (2014). “Logical entropy for quantum states.” ArXiv.org. http://de.arxiv.org/abs/1412.0616v2 .
    TamirB. CohenE. 2014 “Logical entropy for quantum states.” ArXiv.org. http://de.arxiv.org/abs/1412.0616v2
  3. G. Manfredi and M. R. Feix (2000). “Entropy and wigner functions.” Physical Review E, 62,4665–4674. https://doi.org/10.1103/PhysRevE.62.4665.
  4. D. Ellerman (2021). New Foundations for Information Theory: Logical Entropy and Shannon Entropy. Cham, Switzerland: SpringerNature. https://doi.org/10.1007/978-3-030-86552-8.
  5. D. Ellerman (2010). “The logic of partitions: Introduction to the dual of the logic of subsets.” Review of Symbolic Logic, 3: 2 June, 287–350.
  6. D. Ellerman (2014). “An introduction of partition logic.” Logic Journal of the IGPL, 22: 1, 94–125.
  7. D. Ellerman (2023). The Logic of Partitions: With Two Major Applications. Studies in Logic 101. London: College Publications. https://www.collegepublications.co.uk/logic/?00052.
  8. G. Boole (1854). An Investigation of the Laws of Thought on which are founded the Mathematical Theories of Logic and Probabilities. Cambridge: Macmillan and Co.
  9. F. William Lawvere and R. Rosebrugh (2003). Sets for Mathematics. Cambridge: Cambridge University Press.
  10. T. Britz, M. Mainetti and L. Pezzoli (2001). “Some operations on the family of equivalence relations”, in H. Crapo and D. Senato (eds), Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota. Milano: Springer, 445–459.
  11. J. P. S. Kung, G.-C. Rota, and C. H. Yan. (2009). Combinatorics: The Rota Way. New York: Cambridge University Press.
  12. G.-C. Rota (2001). “Twelve problems in probability no one likes to bring up”, in H. Crapo and D. Senato (eds), Algebraic Combinatorics and Computer Science. Milano: Springer, 57–93.
  13. A. N. Kolmogorov (1983). “Combinatorial foundations of information theory and the calculus of probabilities.” Russian Mathematical Surveys, 38: 4, 29–40.
  14. C. E. Shannon (1948). “A mathematical theory of communication.” Bell System Technical Journal, 27: 379–423; 623–656.
  15. C. E. Shannon and W. Weaver. (1964). The Mathematical Theory of Communication. Urbana: University of Illinois Press.
  16. L. L. Campbell (1965). “Entropy as a measure.” IEEE Transactions on Information Theory, IT-11: January, 112–114.
  17. U. Fano (1957). “Description of states in quantum mechanics by density matrix and operator techniques.” Reviews of Modern Physics, 29: 1, 74–93.
  18. G. Auletta, M. Fortunato, and G. Parisi (2009). Quantum Mechanics. Cambridge: Cambridge University Press.
  19. G. Rossi (2011). “Partition distances.” arXiv:1106.4579v1.
  20. B. Tamir and E. Cohen (2015). “A Holevo-type bound for a Hilbert Schmidt distance measure.” Journal of Quantum Information Science, 5, 127–133.
  21. V. Vedral and M. B. Plenio (1998). “Entanglement measures and purification procedures.” Physical Review A, 57: 3, 1619–1633.
  22. G.-C. Rota (1997). Indiscrete Thoughts. Boston: Birkhäuser.
  23. S. Roman (2008). Advanced Linear Algebra 3rd. Ed. New York: Springer Science+Business Media.
  24. M. Nielsen and I. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.
  25. G. Jaeger (2007). Quantum Information: An Overview. New York: Springer Science+Business Media.
  26. 26. G. Manfredi (ed.) (2022). “Logical entropy – special issue.” 4Open, no. 5, E1. https://doi.org/10.1051/fopen/2022005 .
    ManfrediG. (ed.) 2022 “Logical entropy – special issue.” 4Open 5 E1 https://doi.org/10.1051/fopen/2022005
  27. F. Buscemi, P. Bordone, and A. Bertoni (2007). “Linear entropy as an entanglement measure in two-fermion systems.” ArXiv.org, March 2. http://arxiv.org/abs/quant-ph/0611223v2.
  28. B. Tamir, I. L. Piava, Z. Schwartzman-Nowik, and E. Cohen (2022). “Quantum logical entropy: Fundamentals and general properties.” 4Open Special Issue: Logical Entropy, 5: 2, 1–14. https://doi.org/10.1051/fopen/2021005.
  29. C. E. Shannon (1993). “Some topics in information theory”, in N. J. A. Sloane and A. D. Wyner (eds), Claude E. Shannon: Collected Papers. Piscataway NJ: IEEE Press, 458–459.
  30. C. H. Bennett (2003). “Quantum information: Qubits and quantum error correction.” International Journal of Theoretical Physics, 42: 2 February, 153–176.
DOI: https://doi.org/10.2478/qic-2025-0005 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 82 - 96
Submitted on: Dec 20, 2024
Accepted on: Feb 11, 2025
Published on: Feb 25, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 David Ellerman, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.