Have a personal or library account? Click to login
A New Logical Measure for Quantum Information Cover
By: David Ellerman  
Open Access
|Feb 2025

Figures & Tables

Figure 1.

The lattices of the dual subsets and partitions.
The lattices of the dual subsets and partitions.

Figure 2.

Venn diagram for compound logical entropies.
Venn diagram for compound logical entropies.

Figure 3.

Venn diagram “mnemonic” for compound Shannon entropies.
Venn diagram “mnemonic” for compound Shannon entropies.

Figure 4.

Venn diagram relationships for quantum logical entropy.
Venn diagram relationships for quantum logical entropy.

Elements-distinctions duality between the two dual logics_

Logic ℘(U) of subsets of ULogic of partitions Π(U) on U
Its/DitsElements of subsetsDistinctions of partitions
P.O.Inclusion of subsetsInclusion of ditsets
JoinUnion of subsetsUnion of ditsets
MeetSubset of common elementsDitset of common dits
Impl.ST = U iff STσπ = 1U iff σπ
TopSubset U with all elementsPartition 1U with all distinctions
BottomSubset ∅ with no elementsPartition 0U with no distinctions

Linearization dictionary to translate set concepts into corresponding vector space concepts_

Set conceptVector-space concept
Subset SUSubspace [S] ⊆ V
Partition {f−1(r)}rf(U)DSD {Vr}rf(U)
Disjoint union U = ⊎rf(U) f−1(r)Direct sum V = ⊕rf(U)Vr
Numerical attribute f : U → ℝObservable F ui = f(ui)ui
fS = rSF ui = rui
Constant set S of fEigenvector ui of F
Value r on constant set SEigenvalue r of eigenvector ui
Characteristic fcn. χS : U → {0, 1}Projection operator P[S]ui = χS (ui)ui
rf(U) χf−1 (r) = χUrf(U) Pr = I : VV
Spectral Decomp. f = ∑rf(U) rχf−1(r)Spectral Decomp. F = ∑rf(U) rPr
Set of r-constant sets ℘(f−1(r))Eigenspace Vr of r-eigenvectors
Direct product U × UTensor product VV

Yoga of Linearization without probabilities case_

Logical entropyQuantum logical entropy
U = {u1, ..., un}ON basis U for Hilbert space V
f, g :UCommuting F , G : VV
{r}rf(U), {S}sg(U)Eigenvalues of F and G
π = {f−1(r)}rf(U), σ = {g−1(S)}sg(U)DSDs of eigenspaces of F , G
Dits of π : (ui, uk), f(ui) ≠ f(uk)Qudits F : uiuk, f(ui) ≠ f(uk)
Dits of σ : (ui, uk), g(ui) ≠ g(uk)Qudits G: uiuk, g(ui) ≠ g(uk)
Ditset of π: dit(π)[qudit(F)]: Subspace generated in VV
Ditset of σ: dit(σ)[qudit(G)]: Subspace generated in VV
Join: dit(π) ∪ dit(σ) ⊆ U × U[qudit(F) ∪ qudit(G)] ⊆ VV
Difference: dit(π) − dit(σ) ⊆ U × U[qudit(F) − qudit(G)] ⊆ VV
Mutual: dit(π) ∩ dit(σ) ⊆ U × U[qudit(F) ∩ qudit(G)] ⊆ VV

Duality of quantitative subsets and partitions_

Logical Probability TheoryLogical Information Theory
OutcomesElements of SDistinctions of π
EventsSubsets SUDitsets dit(π) ⊆ U × U
pi=1n p_i = {1 \over n} Pr(S)=|S|[U] \Pr \left( S \right) = {{\left| S \right|} \over {\left[ U \right]}} h(π)=|dit(π)||U×U| h\left( \pi \right) = {{\left| {{\rm{dit}}\left( \pi \right)} \right|} \over {\left| {U \times U} \right|}}
Probs. pPr(S) = ∑uiS pih(π) = ∑(ui, uk)∈dit(π) pipk
Interpretation1-draw prob. of S-element2-draw prob. of π-distinction

Logical entropy + Linearization = quantum logical entropy_

Logical entropyQuantum logical entropy
ρ(0U) = ρ(U) = ρ(U)2Pure state ρ(ψ) = ρ(ψ)2
p × p on U × Uρ(ψ) ⊗ ρ(ψ) on VV
h(0U) = 1 − tr[ρ(0U)2] = 0h(ρ(ψ)) = 1 − tr[ρ(ψ)2] = 0
π = f−1, h(π) = p × p(dit(π))h(F : ψ) = tr[P[qudit(F)]ρ (ψ) ⊗ ρ(ψ)]
h(π, σ) = p × p(dit(π) ∪ dit(σ))tr [P[qudit(F)∪qudit(G)]ρ(ψ) ⊗ ρ(ψ)]
h(π|σ) = p × p(dit(π) − dit(σ))tr [P[qudit(F)−qudit(G)]ρ(ψ) ⊗ ρ(ψ)]
m(π σ) = p × p(dit(π) ∩ dit(σ))tr [P[qudit(F)∩qudit(G)]ρ(ψ) ⊗ ρ(ψ)]
h (π) = h (π|σ) + m(π, σ)h(F : ψ) = h(F|G : ψ) + m(F, G : ψ)
ρ(π) = ρ̂(0U) = ∑rf(U) Prρ(0U)P rρ̂(ψ) = ∑rf(U) Prρ(ψ)Pr
h(π) = 1 − tr [ρ(π)2]h(F : ψ) = 1 − tr[ρ̂(ψ)2]

Dictionary translating set partitions into density matrices_

Set concept with probabilitiesSet level density matrix concept
Partition π with point probs. pDensity matrix ρ(π)=j=1mPr(Bj)|bjbj| \rho (\pi ) = \sum\nolimits_{j = 1}^m \Pr (B_j )|b_j \rangle \langle b_j |
Point probabilities {p1, ..., pn}Value of diagonal entries of ρ(π)
Trivial indits (ui, ui) of πDiagonal entries of ρ(π)
Non-trivial indits of πNon-zero off-diagonal entries of ρ(π)
Dits of πZero entries of ρ(π)
Sum Pr(Bj) = ∑uiBj piTrace tr[PBjρ(π)]
Block probabilities Pr(Bj) in πEigenvalues ≠ 0 of ρ(π)
Block prob. 1 of U in 0U = {U}Non-zero eigenvalue of 1 for ρ(0U)

The dit-bit transform from logical entropy to Shannon entropy_

The Dit-Bit Transform: 1pilog(1pi) 1 - p_i \rightsquigarrow \log \left( {{1 \over {p_i }}} \right)
h(p) =ipi(1 − pi)
H(p) =ipi log(1/pi)
h(X, Y) =x,y p (x, y) [1 − p(x, y)]
H(X, Y) = x,yp(x,y)log(1p(x,y)) \sum\nolimits_{x,y} p\left( {x,y} \right)\log \left( {{1 \over {p\left( {x,y} \right)}}} \right)
h(X|Y) =x,y p (x, y) [(1 − p(x, y) − (1 − p(y))]
H(X|Y) = x,yp(x,y)[log(1p(x,y))log(1p(y))] \sum\nolimits_{x,y} p\left( {x,y} \right)\left[ {\log \left( {{1 \over {p\left( {x,y} \right)}}} \right) - \log \left( {{1 \over {p\left( y \right)}}} \right)} \right]
m(X, Y)x,y p(x,y) [[1 − p(x)] + [1 − p(y)] − [1 − p(x,y)]]
I(X, Y) x,yp(x,y)[log(1p(x))+log(1p(y))log(1p(x,y))] \sum\nolimits_{x,y} p\left( {x,y} \right)\left[ {\log \left( {{1 \over {p\left( x \right)}}} \right) + \log \left( {{1 \over {p\left( y \right)}}} \right) - \log \left( {{1 \over {p\left( {x,y} \right)}}} \right)} \right]
DOI: https://doi.org/10.2478/qic-2025-0005 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 82 - 96
Submitted on: Dec 20, 2024
Accepted on: Feb 11, 2025
Published on: Feb 25, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 David Ellerman, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.