References
- M. Creutz and A. Gocksch (1989). “Higher-order hybrid Monte Carlo algorithms”. Physical Review Letters, 63, 9.
https://doi.org/10.1103/PhysRevLett.63.9 . - M. Suzuki (1990). “Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations”. Physical Letters A, 146, 319
https://doi.org/10.1016/0375-9601(90)90962-N . - H. Yoshida, (1990). “Construction of higher order symplectic integrators”. Physics Letters A, 150, 262
https://doi.org/10.1016/0375-9601(90)90092-3 . - M. Suzuki (1991). “General theory of fractal path integrals with applications to many-body theories and statistical physics.” Journal of Mathematical Physics, 32, 400.
https://doi.org/10.1063/1.529425 . - D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders (2007). “Efficient quantum algorithms for simulating sparse Hamiltonians”. Communications in Mathematical Physics, 270, 359.
https://doi.org/10.1007/s00220-006-0150-x . - S. Lloyd (1996). “Universal quantum simulators”. Science, 273, 1073.
https://doi.org/10.1126/science.273.5278.1073 . - D. Aharonov and A. Ta-Shma (2003). “Adiabatic quantum state generation and statistical zero knowledge”, in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC '03. New York: Association for Computing Machinery, pp. 20–29.
https://doi.org/10.1145/780542.780546 . - D. W. Berry and A. M. Childs (2012). “Black-box Hamiltonian simulation and unitary implementation”. Quantum Information and Computation, 12, 29–62.
https://doi.org/10.26421/QIC12.1-2-4 . - D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2014). “Exponential improvement in precision for simulating sparse Hamiltonians”, in Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14. New York: Association for Computing Machinery, pp. 283–292.
https://doi.org/10.1145/2591796.2591854 . - D. W. Berry, A. M. Childs, and R. Kothari (2015). “Hamiltonian simulation with nearly optimal dependence on all parameters”, in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809.
https://doi.org/10.1109/FOCS.2015.54 . - G. H. Low (2019) “Hamiltonian simulation with nearly optimal dependence on spectral norm”, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019). New York: Association for Computing Machinery, pp. 491–502.
https://doi.org/10.1145/3313276.3316386 . - A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu (2021) “Theory of Trotter error with commutator scaling”. Physical Review X, 11, 011020.
https://doi.org/10.1103/PhysRevX.11.011020 . - A. M. Childs and N. Wiebe (2012) “Hamiltonian simulation using linear combinations of unitary operations”. Quantum Information and Computation, 12, 901–924.
https://doi.org/10.26421/QIC12.11-12-1 . - D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2015), Simulating Hamiltonian dynamics with a truncated Taylor Series”. Physical Review Letters, 114, 090502.
https://doi.org/10.1103/PhysRevLett.114.090502 . - G. H. Low and I. L. Chuang (2017). “Optimal Hamiltonian simulation by quantum signal processing”. Physical Review Letters, 118, 010501.
https://doi.org/10.1103/PhysRevLett.118.010501 . - R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, and N. Wiebe (2015) “Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation”. Physical Review A, 91, 022311.
https://doi.org/10.1103/PhysRevA.91.022311 . - A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su (2018) “Toward the first quantum simulation with quantum speedup”. Proceedings of the National Academy of Sciences, 115, 9456.
https://doi.org/10.1073/pnas.1801723115 . - Y. Su, H.-Y. Huang, and E. T. Campbell (2021) “Nearly tight Trotterization of interacting electrons”. Quantum, 5, 495.
https://doi.org/10.22331/q-2021-07-05-495 . - C. Zhang (2012). “Randomized algorithms for Hamiltonian simulation”, in L. Plaskota and H. Woźniakowski, (eds), Monte Carlo and Quasi-Monte Carlo Methods 2010. Berlin, Heidelberg: Springer, pp. 709–719.
https://doi.org/10.1007/978-3-642-27440-4_42 . - E. Campbell (2019). “Random compiler for fast Hamiltonian simulation”. Physical Review Letters, 123, 070503.
https://doi.org/10.1103/PhysRevLett.123.070503 . - A. M. Childs, A. Ostrander, and Y. Su (2019). “Faster quantum simulation by randomization”. Quantum, 3, 182.
https://doi.org/10.22331/q-2019-09-02-182 . - M. P. Calvo and J. M. Sanz-Serna (1993). “High-order symplectic Runge–Kutta–Nyström methods”. SIAM Journal on Scientific Computing, 14, 1237.
https://doi.org/10.1137/0914073 . - M. Suzuki and K. Umeno (1993). “Higher-order decomposition theory of exponential operators and its applications to QMC and nonlinear dynamics”, in D. P. Landau, K. K. Mon, and H.-B. Schüttler (eds), Computer Simulation Studies in Condensed-Matter Physics VI. Berlin, Heidelberg: Springer, pp. 74–86.
- R. I. McLachlan (1995). “On the numerical integration of ordinary differential equations by symmetric composition methods”. SIAM Journal on Scientific Computing, 16, 151.
https://doi.org/10.1137/0916010 . - W. Kahan and R.-C. Li (1997). “Composition constants for raising the orders of unconventional schemes for ordinary differential equations”. Mathematics of Computation, 66, 1089–1099.
https://doi.org/10.1090/S0025-5718-97-00873-9 . - C. Tsitouras (1999). “A tenth order symplectic Runge–Kutta–Nyström Method”. Celestial Mechanics and Dynamical Astronomy, 74, 223–230.
https://doi.org/10.1023/a:1008346516048 . - R. I. McLachlan (2002). “Families of high-order composition methods”. Numerical Algorithms, 31, 233–246.
https://doi.org/10.1023/a:1021195019574 . - E. Hairer, G. Wanner, and C. Lubich (2006). Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag.
https://doi.org/10.1007/3-540-30666-8 . - M. Sofroniou and G. Spaletta (2005). “Derivation of symmetric composition constants for symmetric integrators”. Optimization Methods and Software, 20, 597.
https://doi.org/10.1080/10556780500140664 . - S. Blanes, F. Casas, and A. Murua (2008). “Splitting and composition methods in the numerical integration of differential equations”. Boletín de la Sociedad Española de Matemática Aplicada, 45, 89, Available at:
https://www.sema.org.es/Documentos/Fotos/1/0/2/5/pagina_fichero_1025-ficheros-1644772684-01752300-68691.pdf (Accessed on 6 December 2024). - S. Blanes, F. Casas, and A. Murua (2006). “Composition methods for differential equations with processing”. SIAM Journal on Scientific Computing, 27, 1817.
https://doi.org/10.1137/030601223 . - S. Blanes, F. Casas, P. Chartier, and A. Murua (2013). “Optimized high-order splitting methods for some classes of parabolic equations”. Mathematics of Computation, 82, 1559. Available at:
http://www.jstor.org/stable/42002709 (Accessed on 6 December 2024). - S. Blanes, F. Casas, and A. Murua (2024). “Splitting methods for differential equations”. Acta Numerica, 33, 1–161.
https://doi.org/10.1017/S0962492923000077 . - M. A. Lopez-Marcos, R. D. Skeel, and J. M. Sanz-Serna (1996). “Cheap enhancement of symplectic integrators”, in Numerical Analysis, Longman Scientific and Technical, pp. 107–122.
- J. Butcher and J. Sanz-Serna (1996). “The number of conditions for a Runge-Kutta method to have effective order p”. Applied Numerical Mathematics, 22, 103.
https://doi.org/10.1016/S0168-9274(96)00028-1 . - R. I. McLachlan (1996). “More on symplectic correctors”. Integration Algorithms and Classical Mechanics, 10, 141.
- J. Wisdom, M. Holman, and J. Touma (1996). “Symplectic correctors”. Integration Algorithms and Classical Mechanics, 10, 217.
- S. Blanes, F. Casas, and J. Ros (1999). “Symplectic integration with processing: A general study”. SIAM Journal on Scientific Computing, 21, 711.
https://doi.org/10.1137/S1064827598332497 . - S. Blanes (2001). “High order numerical integrators for differential equations using composition and processing of low order methods”. Applied Numerical Mathematics, 37, 289.
https://doi.org/10.1016/S0168-9274(00)00044-1 . - S. Blanes, F. Casas, and A. Escorihuela-Tomàs (2024). “Families of efficient low order processed composition methods”. Applied Numerical Mathematics, 204, 86.
https://doi.org/10.1016/j.apnum.2024.06.002 . - S. Blanes and F. Casas (2004). “On the convergence and optimization of the Baker–Campbell–Hausdorff formula”. Linear Algebra and its Applications, 378, 135.
https://doi.org/10.1016/j.laa.2003.09.010 . - E. Forest and R. D. Ruth (1990). “Fourth-order symplectic integration”. Physica D: Nonlinear Phenomena, 43, 105.
https://doi.org/10.1016/0167-2789(90)90019-L . - M. Campostrini and P. Rossi (1990). “A comparison of numerical algorithms for dynamical fermions”. Nuclear Physics B, 329, 753.
https://doi.org/10.1016/0550-3213(90)90081-N . - E. Forest (2006). “Geometric integration for particle accelerators”. Journal of Physics A: Mathematical and General, 39, 5321.
https://doi.org/10.1088/0305-4470/39/19/S03 . - R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven (2018). “Encoding electronic spectra in quantum circuits with linear T complexity”. Physical Review X, 8, 041015
https://doi.org/10.1103/PhysRevX.8.041015 . - J. Ostmeyer (2023). “Optimised Trotter decompositions for classical and quantum computing”. Journal of Physics A: Mathematical and Theoretical, 56, 285303.
https://doi.org/10.1088/1751-8121/acde7a . - S. Blanes and P. Moan (2002). “Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods”. Journal of Computational and Applied Mathematics, 142, 313–324.
https://doi.org/10.1016/S0377-0427(01)00492-7 . - E. Alberdi, M. Antoñana, J. Makazaga, and A. Murua (2019). “An algorithm based on continuation techniques for minimization problems with highly non-linear equality constraints”. arXiv, arXiv:1909.07263.
- C. Gidney and M. Ekerå (2021). “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum, 5, 433.
https://doi.org/10.22331/q-2021-04-15-433 . - G. H. Low, Y. Su, Y. Tong, and M. C. Tran (2023). “Complexity of implementing Trotter steps”. PRX Quantum, 4, 020323.
https://doi.org/10.1103/PRXQuantum.4.020323 . - N. C. Rubin, D. W. Berry, A. Kononov, F. D. Malone, T. Khattar, A. White, J. Lee, H. Neven, R. Babbush, and A. D. Baczewski (2024), “Quantum computation of stopping power for inertial fusion target design”. Proceedings of the National Academy of Sciences, 121, e2317772121.
https://doi.org/10.1073/pnas.2317772121 . - Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Babbush (2021). “Fault-tolerant quantum simulations of chemistry in first quantization”. PRX Quantum, 2, 040332.
https://doi.org/10.1103/PRXQuantum.2.040332 . - C.-H. Cho, D. W. Berry, and M.-H. Hsieh (2024). “Doubling the order of approximation via the randomized product formula”. Physical Review A, 109, 062431.
https://doi.org/10.1103/PhysRevA.109.062431 . - A. Van-Brunt and M. Visser (2016). “Simplifying the Reinsch algorithm for the Baker–Campbell–Hausdorff series”. Journal of Mathematical Physics, 57, 023507.
https://doi.org/10.1063/1.4939929 . - I. Duleba and I. Karcz-Duleba, (2020). “Algorithm to express lie monomials in Ph. Hall basis and its practical applications”, in R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia (eds), Computer Aided Systems Theory – EUROCAST 2019, Cham: Springer International Publishing, pp. 465–473.
https://doi.org/10.1007/978-3-030-45093-9_56 .