Have a personal or library account? Click to login
Selection and Improvement of Product Formulae for Best Performance of Quantum Simulation Cover

Selection and Improvement of Product Formulae for Best Performance of Quantum Simulation

Open Access
|Jan 2025

References

  1. M. Creutz and A. Gocksch (1989). “Higher-order hybrid Monte Carlo algorithms”. Physical Review Letters, 63, 9. https://doi.org/10.1103/PhysRevLett.63.9.
  2. M. Suzuki (1990). “Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations”. Physical Letters A, 146, 319 https://doi.org/10.1016/0375-9601(90)90962-N.
  3. H. Yoshida, (1990). “Construction of higher order symplectic integrators”. Physics Letters A, 150, 262 https://doi.org/10.1016/0375-9601(90)90092-3.
  4. M. Suzuki (1991). “General theory of fractal path integrals with applications to many-body theories and statistical physics.” Journal of Mathematical Physics, 32, 400. https://doi.org/10.1063/1.529425.
  5. D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders (2007). “Efficient quantum algorithms for simulating sparse Hamiltonians”. Communications in Mathematical Physics, 270, 359. https://doi.org/10.1007/s00220-006-0150-x.
  6. S. Lloyd (1996). “Universal quantum simulators”. Science, 273, 1073. https://doi.org/10.1126/science.273.5278.1073.
  7. D. Aharonov and A. Ta-Shma (2003). “Adiabatic quantum state generation and statistical zero knowledge”, in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC '03. New York: Association for Computing Machinery, pp. 20–29. https://doi.org/10.1145/780542.780546.
  8. D. W. Berry and A. M. Childs (2012). “Black-box Hamiltonian simulation and unitary implementation”. Quantum Information and Computation, 12, 29–62. https://doi.org/10.26421/QIC12.1-2-4.
  9. D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2014). “Exponential improvement in precision for simulating sparse Hamiltonians”, in Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC '14. New York: Association for Computing Machinery, pp. 283–292. https://doi.org/10.1145/2591796.2591854.
  10. D. W. Berry, A. M. Childs, and R. Kothari (2015). “Hamiltonian simulation with nearly optimal dependence on all parameters”, in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809. https://doi.org/10.1109/FOCS.2015.54.
  11. G. H. Low (2019) “Hamiltonian simulation with nearly optimal dependence on spectral norm”, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019). New York: Association for Computing Machinery, pp. 491–502. https://doi.org/10.1145/3313276.3316386.
  12. A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu (2021) “Theory of Trotter error with commutator scaling”. Physical Review X, 11, 011020. https://doi.org/10.1103/PhysRevX.11.011020.
  13. A. M. Childs and N. Wiebe (2012) “Hamiltonian simulation using linear combinations of unitary operations”. Quantum Information and Computation, 12, 901–924. https://doi.org/10.26421/QIC12.11-12-1.
  14. D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma (2015), Simulating Hamiltonian dynamics with a truncated Taylor Series”. Physical Review Letters, 114, 090502. https://doi.org/10.1103/PhysRevLett.114.090502.
  15. G. H. Low and I. L. Chuang (2017). “Optimal Hamiltonian simulation by quantum signal processing”. Physical Review Letters, 118, 010501. https://doi.org/10.1103/PhysRevLett.118.010501.
  16. R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik, and N. Wiebe (2015) “Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation”. Physical Review A, 91, 022311. https://doi.org/10.1103/PhysRevA.91.022311.
  17. A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su (2018) “Toward the first quantum simulation with quantum speedup”. Proceedings of the National Academy of Sciences, 115, 9456. https://doi.org/10.1073/pnas.1801723115.
  18. Y. Su, H.-Y. Huang, and E. T. Campbell (2021) “Nearly tight Trotterization of interacting electrons”. Quantum, 5, 495. https://doi.org/10.22331/q-2021-07-05-495.
  19. C. Zhang (2012). “Randomized algorithms for Hamiltonian simulation”, in L. Plaskota and H. Woźniakowski, (eds), Monte Carlo and Quasi-Monte Carlo Methods 2010. Berlin, Heidelberg: Springer, pp. 709–719. https://doi.org/10.1007/978-3-642-27440-4_42.
  20. E. Campbell (2019). “Random compiler for fast Hamiltonian simulation”. Physical Review Letters, 123, 070503. https://doi.org/10.1103/PhysRevLett.123.070503.
  21. A. M. Childs, A. Ostrander, and Y. Su (2019). “Faster quantum simulation by randomization”. Quantum, 3, 182. https://doi.org/10.22331/q-2019-09-02-182.
  22. M. P. Calvo and J. M. Sanz-Serna (1993). “High-order symplectic Runge–Kutta–Nyström methods”. SIAM Journal on Scientific Computing, 14, 1237. https://doi.org/10.1137/0914073.
  23. M. Suzuki and K. Umeno (1993). “Higher-order decomposition theory of exponential operators and its applications to QMC and nonlinear dynamics”, in D. P. Landau, K. K. Mon, and H.-B. Schüttler (eds), Computer Simulation Studies in Condensed-Matter Physics VI. Berlin, Heidelberg: Springer, pp. 74–86.
  24. R. I. McLachlan (1995). “On the numerical integration of ordinary differential equations by symmetric composition methods”. SIAM Journal on Scientific Computing, 16, 151. https://doi.org/10.1137/0916010.
  25. W. Kahan and R.-C. Li (1997). “Composition constants for raising the orders of unconventional schemes for ordinary differential equations”. Mathematics of Computation, 66, 1089–1099. https://doi.org/10.1090/S0025-5718-97-00873-9.
  26. C. Tsitouras (1999). “A tenth order symplectic Runge–Kutta–Nyström Method”. Celestial Mechanics and Dynamical Astronomy, 74, 223–230. https://doi.org/10.1023/a:1008346516048.
  27. R. I. McLachlan (2002). “Families of high-order composition methods”. Numerical Algorithms, 31, 233–246. https://doi.org/10.1023/a:1021195019574.
  28. E. Hairer, G. Wanner, and C. Lubich (2006). Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag. https://doi.org/10.1007/3-540-30666-8.
  29. M. Sofroniou and G. Spaletta (2005). “Derivation of symmetric composition constants for symmetric integrators”. Optimization Methods and Software, 20, 597. https://doi.org/10.1080/10556780500140664.
  30. S. Blanes, F. Casas, and A. Murua (2008). “Splitting and composition methods in the numerical integration of differential equations”. Boletín de la Sociedad Española de Matemática Aplicada, 45, 89, Available at: https://www.sema.org.es/Documentos/Fotos/1/0/2/5/pagina_fichero_1025-ficheros-1644772684-01752300-68691.pdf (Accessed on 6 December 2024).
  31. S. Blanes, F. Casas, and A. Murua (2006). “Composition methods for differential equations with processing”. SIAM Journal on Scientific Computing, 27, 1817. https://doi.org/10.1137/030601223.
  32. S. Blanes, F. Casas, P. Chartier, and A. Murua (2013). “Optimized high-order splitting methods for some classes of parabolic equations”. Mathematics of Computation, 82, 1559. Available at: http://www.jstor.org/stable/42002709 (Accessed on 6 December 2024).
  33. S. Blanes, F. Casas, and A. Murua (2024). “Splitting methods for differential equations”. Acta Numerica, 33, 1–161. https://doi.org/10.1017/S0962492923000077.
  34. M. A. Lopez-Marcos, R. D. Skeel, and J. M. Sanz-Serna (1996). “Cheap enhancement of symplectic integrators”, in Numerical Analysis, Longman Scientific and Technical, pp. 107–122.
  35. J. Butcher and J. Sanz-Serna (1996). “The number of conditions for a Runge-Kutta method to have effective order p”. Applied Numerical Mathematics, 22, 103. https://doi.org/10.1016/S0168-9274(96)00028-1.
  36. R. I. McLachlan (1996). “More on symplectic correctors”. Integration Algorithms and Classical Mechanics, 10, 141.
  37. J. Wisdom, M. Holman, and J. Touma (1996). “Symplectic correctors”. Integration Algorithms and Classical Mechanics, 10, 217.
  38. S. Blanes, F. Casas, and J. Ros (1999). “Symplectic integration with processing: A general study”. SIAM Journal on Scientific Computing, 21, 711. https://doi.org/10.1137/S1064827598332497.
  39. S. Blanes (2001). “High order numerical integrators for differential equations using composition and processing of low order methods”. Applied Numerical Mathematics, 37, 289. https://doi.org/10.1016/S0168-9274(00)00044-1.
  40. S. Blanes, F. Casas, and A. Escorihuela-Tomàs (2024). “Families of efficient low order processed composition methods”. Applied Numerical Mathematics, 204, 86. https://doi.org/10.1016/j.apnum.2024.06.002.
  41. S. Blanes and F. Casas (2004). “On the convergence and optimization of the Baker–Campbell–Hausdorff formula”. Linear Algebra and its Applications, 378, 135. https://doi.org/10.1016/j.laa.2003.09.010.
  42. E. Forest and R. D. Ruth (1990). “Fourth-order symplectic integration”. Physica D: Nonlinear Phenomena, 43, 105. https://doi.org/10.1016/0167-2789(90)90019-L.
  43. M. Campostrini and P. Rossi (1990). “A comparison of numerical algorithms for dynamical fermions”. Nuclear Physics B, 329, 753. https://doi.org/10.1016/0550-3213(90)90081-N.
  44. E. Forest (2006). “Geometric integration for particle accelerators”. Journal of Physics A: Mathematical and General, 39, 5321. https://doi.org/10.1088/0305-4470/39/19/S03.
  45. R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven (2018). “Encoding electronic spectra in quantum circuits with linear T complexity”. Physical Review X, 8, 041015 https://doi.org/10.1103/PhysRevX.8.041015.
  46. J. Ostmeyer (2023). “Optimised Trotter decompositions for classical and quantum computing”. Journal of Physics A: Mathematical and Theoretical, 56, 285303. https://doi.org/10.1088/1751-8121/acde7a.
  47. S. Blanes and P. Moan (2002). “Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods”. Journal of Computational and Applied Mathematics, 142, 313–324. https://doi.org/10.1016/S0377-0427(01)00492-7.
  48. E. Alberdi, M. Antoñana, J. Makazaga, and A. Murua (2019). “An algorithm based on continuation techniques for minimization problems with highly non-linear equality constraints”. arXiv, arXiv:1909.07263.
  49. C. Gidney and M. Ekerå (2021). “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits”. Quantum, 5, 433. https://doi.org/10.22331/q-2021-04-15-433.
  50. G. H. Low, Y. Su, Y. Tong, and M. C. Tran (2023). “Complexity of implementing Trotter steps”. PRX Quantum, 4, 020323. https://doi.org/10.1103/PRXQuantum.4.020323.
  51. N. C. Rubin, D. W. Berry, A. Kononov, F. D. Malone, T. Khattar, A. White, J. Lee, H. Neven, R. Babbush, and A. D. Baczewski (2024), “Quantum computation of stopping power for inertial fusion target design”. Proceedings of the National Academy of Sciences, 121, e2317772121. https://doi.org/10.1073/pnas.2317772121.
  52. Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Babbush (2021). “Fault-tolerant quantum simulations of chemistry in first quantization”. PRX Quantum, 2, 040332. https://doi.org/10.1103/PRXQuantum.2.040332.
  53. C.-H. Cho, D. W. Berry, and M.-H. Hsieh (2024). “Doubling the order of approximation via the randomized product formula”. Physical Review A, 109, 062431. https://doi.org/10.1103/PhysRevA.109.062431.
  54. A. Van-Brunt and M. Visser (2016). “Simplifying the Reinsch algorithm for the Baker–Campbell–Hausdorff series”. Journal of Mathematical Physics, 57, 023507. https://doi.org/10.1063/1.4939929.
  55. I. Duleba and I. Karcz-Duleba, (2020). “Algorithm to express lie monomials in Ph. Hall basis and its practical applications”, in R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia (eds), Computer Aided Systems Theory – EUROCAST 2019, Cham: Springer International Publishing, pp. 465–473. https://doi.org/10.1007/978-3-030-45093-9_56.
DOI: https://doi.org/10.2478/qic-2025-0001 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 1 - 35
Submitted on: Jul 17, 2024
Accepted on: Dec 12, 2024
Published on: Jan 31, 2025
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year
Related subjects:

© 2025 Mauro E. S. Morales, Pedro C. S. Costa, Giacomo Pantaleoni, Daniel K. Burgarth, Yuval R. Sanders, Dominic W. Berry, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.