Figure 1.

Figure 2.
![The spectral-norm error for simulating an 8-qubit transverse-field Ising Hamiltonian in Eq. (59) for our product formula Y8m10b (black), SS8s19 (blue), and SS8s21 (red) from Ref. [29]. The size of the time step is 1, and the components of the Hamiltonian are normalised to unit norm.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/67f982c4df7b4851cb85993f/j_qic-2025-0001_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIA6AP2G7AKCZFNO2NJ%2F20251212%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251212T180337Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEEEaDGV1LWNlbnRyYWwtMSJHMEUCIQC1BtJ%2BEZgPdRqevkjCAg0AlCeyMex%2BOgeujtH26OLuIwIgGY9NOzsuHBFf9kOGd3k7zEWc%2Bv2o0nEofeblJPEwbhMqvQUIChACGgw5NjMxMzQyODk5NDAiDOyTytalmxIlenueRiqaBZNjtQYJ9GDERONT2v2fKLaeZIgIYgwf8jxbnArMopG4cCyRSvSCyYkVFlDpH5Bt0H56HLf9OWwlBY2ze6g9qyualLpKA2F%2BJ7WOpt45BLLdJlH%2F%2FhE0RsF6HPBj1s7VTh6MXhwWYmZPwpfVHM0%2BCo9VtvKUPVN06bedhBRDRpgE7fVyG%2BV4K3fBtXIkPbdHMV%2FRXWn9yO6deypx39x4iVU5D%2Bmc70C%2BymY4wZu5NxgaXlRENOWtwRLYZKykYqNWcChCThlv%2BH9I2S6zA6S01HNCkPfKX1JotC61AWucPm8fxpPKMC1qLmfiUxf%2B3KY77VXOykzFri%2FP%2B6F1zkSQHd5MQP8hdYiVeeLYIPg0iio2GpqZan9mlE2KR%2FfFTW1O1DXLdPfM1bsVGGulsH0xhPOAE5Y57WvZCeRE8dIDRw4iRVD4XGfncqg6X6O9JmY72GPPDRUZ5n8m51OYQp1chB48ACT6eQKBQKLRkNF6YbDoGA6MOH1N%2FCrBF2RJUw8mN9AfeqxjzgamZZ8SDkHXjwmb%2Fco2xJt6W3lF6AwFVew6ju%2B3%2Fy1rgpEFMvMICgwLkywovMoS5mfPdmF3UZcwXBA4uVa60ab8NBj%2BgIeg0BQAuMxN9ZsV7AynB5elcoNvuUueMar9FYrZFwAj7fVPMzr2IhqLZzwoI0nI7HMGwUjINagwf9BkoAttYJZS8a45LzPpz6OFyst%2FP7KdKwCnwQDoEo%2BfhiQ%2BxQTtrEVe1DphUaR7pJinqCNN2ya%2Ba8qFDNHGSfRHovYK1FN38Lc0OFqLkZUNV5af5A3B6I0mJ4YoSJ4kANT6cu8ZyomMTfsHV14vPapQPWBf58iSABCuOw1fOTLbzaCXjGoKTxzTdNXHFnnBaNuTgVA9eDCMjfHJBjqxAb01GDKcsyIAQz0EIpr%2FQt7WrKjSmQZWtjYIw0TgGrpjr9U1qS9OY%2FEDwi69aH9gJUkslTy9xOi8g%2Bu%2FQJlCj66iZVxAfkMVGmFLNqMgWjZ6ZjaZzSNH5kfMf4NTVn1b1FNMEX9KUSoyw4VhprciMrDvZ64fSMwH9U5uAQEEfLnwunpXGCW4I7vpfkyN049CfA4grZABEmXx77LNgzhwuQERSqtCgDYmeylL3ZIvRYJHWw%3D%3D&X-Amz-Signature=f9cb79c0792dca31e3a328892cafc7fad97c9a7caa8cb8ae2589975ab5823e17&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Our best-performing 8th order kernel and processor when setting m = 8_ The value of γ10 for the processor is chosen such that the sum is zero_
| Best 8th order kernel | Processor for kernel | ||
|---|---|---|---|
| w1 | 0.21784176681731006074681969186513 | −0.44324901019570126590495430949294 | γ1 |
| w2 | 0.1947017706053903224022456342907 | 0.25459857192003772850622377066944 | γ2 |
| w3 | 0.18372413281145589944261642180363 | −0.73862036266779261573694538099739 | γ3 |
| w4 | −0.37307499512657736825709230652023 | −0.00024139614958652134370419495289618 | γ4 |
| w5 | 0.15757644257569146373033662060461 | 0.73873460354125365739379753874964 | γ5 |
| w6 | −0.33342207567391682979227850551172 | −0.20285971152536085519251666906017 | γ6 |
| w7 | 0.51788649682987924281787142226803 | 0.44989521689676869571827637424046 | γ7 |
| w8 | 0.21456475499897766986381219621761 | 0.29538398007876871184026747505657 | γ8 |
| −0.3364996155865700091428329802017 | γ9 | ||
The 10th order solution with lowest eigenvalue error in our numerical search_
| 10th order solution with m = 17 | |
|---|---|
| w1 | −0.28371232689144296279654621726493 |
| w2 | 0.046779504778147381605331000278223 |
| w3 | 0.36845892382797770619657504217539 |
| w4 | 0.19186204094674514739760408197461 |
| w5 | −0.53123134392680669702873064192428 |
| w6 | −0.0081253242720827266680816105600661 |
| w7 | −0.16389450414378567860032917538393 |
| w8 | 0.18514766119291405032528647881 |
| w9 | 0.5383584694754681989174668806505 |
| w10 | −0.30583981835573485697292316732177 |
| w11 | 0.43199935609523301289295473774488 |
| w12 | 0.1510502301631786853020124612813 |
| w13 | −0.35051099204829676098801520498121 |
| w14 | 0.1032971125844291674511513007661 |
| w15 | 0.15043936943817152697371946806229 |
| w16 | 0.12118469498650736511410491586846 |
| w17 | 0.10437742779547826358296681557444 |
The list of 6th order product formulae with their average errors_ The column labelled S2 indicates whether it is a product of S2_ The best result is highlighted in green, and is from 2006 [31]_
| label | M | S2 | processing | reference | χ | Mχ1/k | ζ | Mζ1/k |
|---|---|---|---|---|---|---|---|---|
| S6m1 | 9 | Y | N | first fractal product [2] | 4.5 × 10−2 | 5.36 | 2.3 × 10−2 | 4.81 |
| S6m2 | 25 | Y | N | second fractal product [4] | 1.3 × 10−5 | 3.83 | 2.0 × 10−7 | 1.91 |
| Y6m3a | 7 | Y | N | Solution A in Table 1 of [3] | 2.0 × 10−3 | 2.49 | 1.2 × 10−3 | 2.28 |
| KL6s9a | 9 | Y | N | s9odr6a in Appendix A of [25] | 2.9 × 10−4 | 2.31 | 1.7 × 10−4 | 2.12 |
| KL6s9b | 9 | Y | N | s9odr6b in Appendix A of [25] | 2.9 × 10−4 | 2.31 | 1.7 × 10−4 | 2.11 |
| SS6s11 | 11 | Y | N | Section 4.2 of [29] | 4.2 × 10−5 | 2.05 | 1.4 × 10−5 | 1.71 |
| SS6s13 | 13 | Y | N | Section 4.2 of [29] | 2.1 × 10−5 | 2.16 | 3.4 × 10−6 | 1.59 |
| BM6M10 | 10 | N | N | S10 Table 2 of [47] | 6.0 × 10−6 | 1.35 | 1.4 × 10−6 | 1.06 |
| PPBCM6m9 | 9 | N | Y | P96 Table 5 of [31] | 5.0 × 10−6 | 1.18 | 4.3 × 10−7 | 0.78 |
| PPBCM6m5 | 11 | Y | Y | P116 in Table 6 of [31] | 1.9 × 10−6 | 1.22 | 9.0 × 10−7 | 1.08 |
| PPBCM6m6 | 13 | Y | Y | P136 in Table 6 of [31] | 4.8 × 10−7 | 1.15 | 2.5 × 10−7 | 1.03 |
| BCE6m5 | 10 | Y | Y |
| 5.8 × 10−3 | 4.24 | 3.2 × 10−3 | 3.84 |
| BCE6m6 | 12 | Y | Y |
| 7.7 × 10−5 | 2.47 | 2.0 × 10−5 | 1.98 |
| BCE6m7 | 14 | Y | Y |
| 1.6 × 10−5 | 2.22 | 2.4 × 10−6 | 1.62 |
| BCE6m8 | 16 | Y | Y |
| 4.6 × 10−6 | 2.06 | 3.2 × 10−7 | 1.32 |
| BCE6m9 | 18 | Y | Y |
| 7.3 × 10−6 | 2.51 | 1.3 × 10−7 | 1.28 |
| BCE6m10 | 20 | Y | Y |
| 3.2 × 10−6 | 2.42 | 9.9 × 10−9 | 0.93 |
| BCE6m11 | 22 | Y | Y |
| 7.9 × 10−6 | 3.11 | 1.4 × 10−8 | 1.08 |
Comparison of constant factors ω for a selection of the lowest-error product formulae for 8th order_ We generate 1, 000 random Hamiltonians with d = 6 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| SS8s19 | 19 | N | Section 4.3 of [29] | 3.5 × 10−11 | 0.94 |
| PP8s13 | 13 | Y | P138 in Table 6 of [31] | 4.4 × 10−10 | 0.88 |
| Y8m10 | 21 | N | Table 1 (our new result) | 8.5 × 10−12 | 0.87 |
| Y8m10b | 21 | N | Table 1 (our new result) | 1.3 × 10−12 | 0.68 |
| YP8m8 | 17 | Y | Table 2 (our new result) | 1.7 × 10−12 | 0.57 |
Comparison of constant factors ω for a selection of the lowest-error product formulae for 6th order_ We generate 1, 000 random Hamiltonians with d = 4 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| PPBCM6m9 | 9 | Y | P96 Table 5 of [31] | 2.9 × 10−9 | 0.34 |
| PPBCM6m6 BCE6m10 | 13 | Y | P136 in Table 6 of [31] | 1.4 × 10−9 | 0.43 |
| PPBCM6m9 | 20 | Y |
| 3.3 × 10−11 | 0.36 |
Comparison of constant factors ω for a selection of the lowest-error product formulae for 10th order_ We generate 1, 000 random Hamiltonians with d = 4 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| SS10s35 | 35 | N | Section 4.4 of [29] | 3.0 × 10−15 | 1.24 |
| PP10s23 | 23 | Y | P2310 in Table 6 of [31] | 1.5 × 10−12 | 1.51 |
| Y10m17 | 35 | N | Table 3 | 2.5 × 10−14 | 1.53 |
The list of 8th order product formulae with their average errors_ This table shows our new results for product formulae that improve over those in the prior literature_ The result that provides the most efficient simulations is highlighted in (dark) green, and is our processed product formula_ That provides the best performance due to the shorter length, but the lowest error is provided by our product formula highlighted in (dark) blue_ The lowest error results from prior work are highlighted in light blue (for the non-processed case), and light green (for the processed case)_ The processed product formula PP8s13 (P138) has larger error than the highlighted PP8s19, but better performance due to its shorter length_
| label | M | processing | reference | χ | Mχ1/k | ζ | Mζ1/k | |
|---|---|---|---|---|---|---|---|---|
| S8m1 | 27 | N | first fractal product [2] | 5.6 × 10−2 | 18.8 | 1.6 × 10−2 | 16.2 | |
| S8m2 | 125 | N | second fractal product [4] | 6.7 × 10−9 | 11.9 | 5.2 × 10−13 | 3.64 | |
| Y8m7d | 15 | N | Solution D in Table 2 of [3] | 1.1 × 10−3 | 6.41 | 1.3 × 10−4 | 4.89 | |
| MC8s15 | 15 | N | Table 2 of [24] | 6.5 × 10−6 | 3.37 | 2.0 × 10−6 | 2.90 | |
| MC8s17 | 17 | N | Table 2 of [24] | 7.9 × 10−7 | 2.94 | 3.3 × 10−7 | 2.63 | |
| KL8s17a | 17 | N | s17odr8a in [25] | 6.1 × 10−7 | 2.84 | 2.7 × 10−7 | 2.56 | |
| KL8s17b | 17 | N | s17odr8b in [25] | 5.9 × 10−7 | 2.83 | 2.5 × 10−7 | 2.54 | |
| SS8s19 | 19 | N | Section 4.3 of [29] | 1.8 × 10−7 | 2.72 | 5.3 × 10−8 | 2.34 | |
| SS8s21 | 21 | N | Section 4.3 of [29] | 3.4 × 10−7 | 3.27 | 7.5 × 10−8 | 2.70 | |
| PP8s13 | 13 | Y | P138 in Table 6 of [31] | 1.2 × 10−6 | 2.37 | 6.5 × 10−7 | 2.19 | |
| PP8s19 | 19 | Y | P198 in Table 6 of [31] | NA | NA | 2.4 × 10−7 | 2.83 | |
| Y8m10 | 21 | N | Table 1 (our new result) | 5.8 × 10−8 | 2.61 | 7.0 × 10−9 | 2.01 | |
| Y8m10b | 21 | N | Table 1 (our new result) | 6.3 × 10−7 | 3.53 | 5.4 × 10−10 | 1.46 | |
| YP8m8 | 17 | Y | Table 2 (our new result) | 5.3 × 10−8 | 2.09 | 8.1 × 10−10 | 1.24 | |
The list of 10th order product formulae with their average errors_ The best result is highlighted in green, and is the product formula from 2005 [29]_ That product formula provides exceptional performance for 10th order, being about 280 times better than all others from prior work, and half the error of our solution (bottom line)_
| label | M | processing | reference | χ | Mχ1/k | ζ | Mζ1/k | |
|---|---|---|---|---|---|---|---|---|
| S10m1 | 81 | N | first fractal product [2] | 9.0 × 10−2 | 63.7 | 2.7 × 10−3 | 44.8 | |
| S10m2 | 625 | N | second fractal product [4] | 4.1 × 10−13 | 36.0 | 6.1 × 10−19 | 9.44 | |
| KL10s31a | 31 | N | s31odr10a in Appendix A of [25] | 8.7 × 10−6 | 9.67 | 5.8 × 10−6 | 9.28 | |
| KL10s31b | 31 | N | s31odr10b in Appendix A of [25] | 8.4 × 10−5 | 12.1 | 4.1 × 10−5 | 11.3 | |
| Tsi10s33 | 33 | N | Table II of [26] | 3.3 × 10−6 | 9.33 | 6.4 × 10−7 | 7.93 | |
| SS10s31 | 31 | N | Section 4.4 of [29] | 4.2 × 10−8 | 5.66 | 2.4 × 10−8 | 5.36 | |
| SS10s33 | 33 | N | Section 4.4 of [29] | 1.4 × 10−8 | 5.42 | 8.8 × 10−9 | 5.17 | |
| SS10s35 | 35 | N | Section 4.4 of [29] | 1.0 × 10−9 | 4.41 | 3.1 × 10−11 | 3.11 | |
| Alberdi31 | 31 | N | Appendix A of [48] | 1.5 × 10−7 | 6.44 | 1.0 × 10−7 | 6.20 | |
| Alberdi33 | 33 | N | Appendix A of [48] | 8.4 × 10−8 | 6.47 | 5.5 × 10−8 | 6.20 | |
| Alberdi35 | 35 | N | Appendix A of [48] | 1.5 × 10−8 | 5.79 | 9.5 × 10−9 | 5.52 | |
| PP10s19 | 19 | Y | P1910 in Table 6 of [31] | NA | NA | 6.2 × 10−6 | 5.73 | |
| PP10s23 | 23 | Y | P2310 in Table 6 of [31] | 1.4 × 10−6 | 5.96 | 1.6 × 10−8 | 3.82 | |
| Y10m17 | 35 | N | Table 3 | 1.9 × 10−8 | 5.91 | 6.1 × 10−11 | 3.33 | |
The list of 4th order product formulae_ The column labelled “processing” indicates whether the formula uses processor_ The label is the name we will refer to the formula by_ The constant factor in the error is denoted χ for spectral-norm error and ζ for eigenvalue error, and the corresponding quantities Mχ1/k and Mζ1/k are given_ The column labelled S2 indicates whether the product formula is a product of S2_ The best result is highlighted in green, and is from 2002 [47]_ The 2006 result PPBCM4m6 is slightly higher error, but it is not evident to 2 significant figures_
| label | M | S2 | processing | reference | χ | Mχ1/k | ζ | Mζ1/k |
|---|---|---|---|---|---|---|---|---|
| S4m1 | 3 | Y | N | first fractal product [2] | 4.9 × 10−2 | 1.41 | 2.3 × 10−2 | 1.17 |
| S4m2 | 5 | Y | N | second fractal product [4] | 3.0 × 10−3 | 1.17 | 3.3 × 10−4 | 0.67 |
| O4M5 | 5 | N | N | Ostmeyer Eq. (40) of [46] | 3.0 × 10−4 | 0.66 | 7.7 × 10−5 | 0.47 |
| BM4M6 | 6 | N | N | S6 Table 2 of [47] | 1.6 × 10−4 | 0.67 | 2.4 × 10−5 | 0.42 |
| PPBCM4m6 | 6 | N | Y | P64 Table 5 of [31] | 5.7 × 10−5 | 0.52 | 2.4 × 10−5 | 0.42 |
| BCE4m3 | 6 | Y | Y |
| 1.6 × 10−2 | 2.15 | 1.5 × 10−3 | 1.17 |
| BCE4m4 | 8 | Y | Y |
| 3.4 × 10−4 | 1.09 | 9.8 × 10−5 | 0.80 |
| BCE4m5 | 10 | Y | Y |
| 6.7 × 10−5 | 0.90 | 2.1 × 10−5 | 0.68 |
| BCE4m6 | 12 | Y | Y |
| 2.6 × 10−5 | 0.85 | 7.0 × 10−6 | 0.62 |
| BCE4m7 | 14 | Y | Y |
| 1.3 × 10−5 | 0.85 | 3.0 × 10−6 | 0.58 |
| BCE4m8 | 16 | Y | Y |
| 7.9 × 10−5 | 0.85 | 1.5 × 10−6 | 0.56 |
| BCE4m9 | 18 | Y | Y |
| 5.3 × 10−6 | 0.86 | 8.6 × 10−7 | 0.55 |
Our best-performing 8th order solutions when setting m = 10_
| Best 8th order for spectral-norm error | Best 8th order for eigenvalue error | |
|---|---|---|
| w1 | 0.59358060400850625863514059265224 | 0.10467636532245895252340732579853 |
| w2 | −0.46916012347004197296293264921328 | −0.57896999331780988041471955125778 |
| w3 | 0.2743566425898467907228242878146 | 0.57503350160061785946141563279891 |
| w4 | 0.17193879484656773059919074965377 | 0.12231011868707029786561397542663 |
| w5 | 0.23439874482541384415430578747541 | 0.27793149999039524816733903301747 |
| w6 | −0.48616424480326193899617759997914 | −0.37349605088056728482635987352576 |
| w7 | 0.49617367388114660354871757044906 | 0.11575566589480463220616543972403 |
| w8 | −0.32660218948439130114501815323814 | 0.1464645610975800618712569230326 |
| w9 | 0.23271679349369857679445410270557 | −0.39443578322284085764474498594073 |
| w10 | 0.098249557414708533273471906180643 | 0.44370228726021218923197141183196 |
Comparison of constant factors ω for a selection of the lowest-error best product formulae for 6th order_ We generate 1, 000 random Hamiltonians with d = 6 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| PPBCM6m9 | 9 | Y | P96 Table 5 of [31] | 2.8 × 10−9 | 0.33 |
| PPBCM6m6 | 13 | Y | P136 in Table 6 of [31] | 1.2 × 10−9 | 0.42 |
| BCE6m10 | 20 | Y | 3.4 × 10−11 | 0.36 | |
Comparison of constant factors ω for a selection of the lowest-error product formulae for 10th order_ We generate 1, 000 random Hamiltonians with d = 6 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| SS10s35 | 35 | N | Section 4.4 of [29] | 3.0 × 10−15 | 1.24 |
| PP10s23 | 23 | Y | P2310 in Table 6 of [31] | 2.3 × 10−12 | 1.58 |
| Y10m17 | 35 | N | Table 3 | 2.6 × 10−14 | 1.53 |
The 8th order kernel tailored for large time step size t = 1_82 to improve the threshold_
| kernel for large time step | |
|---|---|
| w1 | 0.1777372900430394 |
| w2 | 0.2862580532195395 |
| w3 | 0.1701306063199336 |
| w4 | −0.3746748008394162 |
| w5 | 0.1485267804844835 |
| w6 | −0.3773225725485588 |
| w7 | 0.5395886879620081 |
| w8 | 0.2210419534887659 |
Comparison of constant factors ω for a selection of the lowest-error product formulae for 8th order_ We generate 1, 000 random Hamiltonians with d = 4 orbitals as in Eq_ (60) and compute the average ω_
| label | M | processing | reference | ω | Mω1/k |
|---|---|---|---|---|---|
| SS8s19 | 19 | N | Section 4.3 of [29] | 3.4 × 10−11 | 0.93 |
| PP8s13 | 13 | Y | P138 in Table 6 of [31] | 4.2 × 10−10 | 0.87 |
| Y8m10 | 21 | N | Table 1 (our new result) | 8.7 × 10−12 | 0.87 |
| Y8m10b | 21 | N | Table 1 (our new result) | 1.5 × 10−12 | 0.68 |
| YP8m8 | 17 | Y | Table 2 (our new result) | 2.3 × 10−12 | 0.59 |