Have a personal or library account? Click to login
Deterministic Search on Complete Bipartite Graphs by Continuous-Time Quantum Walk Cover

Deterministic Search on Complete Bipartite Graphs by Continuous-Time Quantum Walk

By: Honghong Lin and  Yun Shang  
Open Access
|Oct 2024

References

  1. A. Ambainis, A. Gilyén, S. Jeffery and M. Kokainis (2020). “Quadratic speedup for finding marked vertices by quantum walks”, in K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath and J. Chuzhoy (eds), Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, Jun 22, 412–424.
  2. S. Apers, S. Chakraborty, L. Novo and J. Roland (2022). “Quadratic speedup for spatial search by continuous-time quantum walk”. Physical Review Letters, 129: 16, 160502.
  3. A. Ambainis (2007). “Quantum walk algorithm for element distinctness”. SIAM Journal on Computing 37: 1, 210–239.
  4. J.K. Gamble, M. Friesen, D. Zhou, R. Joynt and S.N. Coppersmith (2010). “Two-particle quantum walks applied to the graph isomorphism problem”. Physical Review A 81: 5, 052313.
  5. D. Aharonov, A. Ambainis, J. Kempe, et al. (2001). “Quantum walks on graphs”, in Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, 50–59.
  6. B. Tödtli, M. Laner, J. Semenov, et al. (2016). “Continuous-time quantum walks on directed bipartite graphs”. Physical Review A, 94: 5, 052338.
  7. R. Chaves, B. Chagas, and G. Coutinho (2023). “Why and how to add direction to a quantum walk”. Quantum Information Processing, 22: 1, 41.
  8. A.M. Childs (2009). “Universal computation by quantum walk”. Physical Review Letters, 102: 18, 180501.
  9. A.M. Childs, D. Gosset and Z. Webb (2013). “Universal computation by multiparticle quantum walk”. Science, 339: 6121, 791–794.
  10. M. Tamura, T. Mukaiyama and K. Toyoda (2020). “Quantum walks of a phonon in trapped ions”. Physical Review Letters, 124: 20, 200501.
  11. J. Wang and K. Manouchehri (2013). Physical Implementation of Quantum Walks. Heidelberg: Springer Berlin, 10: 978–983.
  12. C. A. Ryan, M. Laforest, J.C. Boileau and R. Laflamme (2005). “Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor”. Physical Review A, 72: 6, 062317.
  13. L. K. Grover (1996). “A fast quantum mechanical algorithm for database search”, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996 Jul 1, pp. 212–219.
  14. G.L. Long (2001). “Grover algorithm with zero theoretical failure rate”. Physical Review A, 64: 2, 022307.
  15. G. Li and L. Li, “Deterministic quantum search with adjustable parameters: Implementations and applications”. Information and Computation, 292, 105042.
  16. A. Ambainis, J. Kempe and A. Rivosh (2005). “Coins make quantum walks faster”, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, USA, 1099–1108.
  17. T.G. Wong (2015). “Grover search with lackadaisical quantum walks”. Journal of Physics A: Mathematical and Theoretical, 48: 43, 435304.
  18. G.A. Bezerra, P.H.G. Lugão and R. Portugal (2021). “Quantum-walk-based search algorithms with multiple marked vertices”. Physical Review A, 103: 6, 062202.
  19. M. Roget, H. Kadri and G. Di Molfetta (2023). “Optimality conditions for spatial search with multiple marked vertices”. Physical Review Research, 5: 3, 033021.
  20. S. Chakraborty, L. Novo and J. Roland (2020). “Optimality of spatial search via continuous-time quantum walks”. Physical Review A, 102: 3, 032214.
  21. S. Marsh and J.B. Wang (2021). “Deterministic spatial search using alternating quantum walks,” Physical Review A 104: 2, 022216.
  22. D. Qu, S. Marsh, K. Wang, L. Xiao, J. Wang and P. Xue (2022). “Deterministic search on star graphs via quantum walks”. Physical Review Letters, 128: 5, 050501.
  23. Q. Wang, Y. Jiang, S. Feng, et al. (2023). “Universal approach to deterministic spatial search via alternating quantum walks”. arxiv preprint arxiv:2307.16133.
  24. F. Peng, M. Li and X. Sun (2024). “Deterministic discrete-time quantum walk search on complete bipartite graphs”. Physical Review Research, 6: 3, 033042.
  25. Z. Gong, S. Liu, Y. Wen, et al. (2016). “Biclique cryptanalysis using balanced complete bipartite subgraphs”. Science China. Information Sciences, 59: 4, 049101.
  26. M. Štefaòák and S. Skoupı (2017). “Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs”. Quantum Information Processing, 16, 1–14.
  27. R.A.M. Santos (2022). “Quantum state transfer on the complete bipartite graph”. Journal of Physics A: Mathematical and Theoretical 55: 12, 125301.
  28. T.G. Wong, L. Tarrataca and N. Nahimov (2016). “Laplacian versus adjacency matrix in quantum walk search”. Quantum Information Processing, 5, 4029–4048.
  29. M.L. Rhodes and T.G. Wong (2019). “Quantum walk search on the complete bipartite graph”. Physical Review A, 99: 3, 032301.
  30. R. Beals, H. Buhrman, R. Cleve, et al. (2001). “Quantum lower bounds by polynomials”. Journal of the ACM (JACM), 48: 4, 778–797.
  31. Y. Xu, D. Zhang and L. Li (2022). “Robust quantum walk search without knowing the number of marked vertices”. Physical Review A 106: 5, 052207.
  32. M.A. Nielsen and I.L. Chuang (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  33. G.A. Bezerra, R.A. Santos and R. Portugal (2023). “Quantum counting on the complete bipartite graph”. arxiv preprint arXiv:2311.10407[quant-ph].
  34. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp (2002). “Quantum amplitude amplification and estimation”. Contemporary Mathematics, 305, 53–74.
  35. T. Loke and J.B. Wang (2017). “Efficient quantum circuits for continuous-time quantum walks on composite graphs”. Journal of Physics A: Mathematical and Theoretical, 50: 5, 055303.
  36. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma (2014). “Exponential improvement in precision for simulating sparse Hamiltonians”, in: Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 283–292.
  37. https://qiskit.qotlabs.org/api/qiskit/0.45/qiskit.primitives.Sampler
  38. https://qiskit.github.io/qiskit-aer/
  39. https://github.com/ScarletLynn1998/Paper-Code-for-Deterministic-Search-on-Complete-Bipartite-Graphs-by-Continuous-Time-Quantum-Walk
  40. W. Chu-Ryang (2019). Simpler quantum counting. Quantum Information & Computation, 19, 967–983
  41. S. Aaronson and P. Rall (2020). “Quantum approximate counting, simplified”, in Symposium on Simplicity in Algorithms. Society for Industrial and Applied Mathematics, 24–32.
  42. Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera and N. Yamamoto (2020). “Amplitude estimation without phase estimation”. Quantum Information Processing, 19, 1–7.
  43. D. Grinko, J. Gacon, C. Zoufal and S. Woerner. (2021). “Iterative quantum amplitude estimation”. NPJ Quantum Information, 7: 1, 52.
DOI: https://doi.org/10.2478/qic-2024-0001 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 1 - 15
Submitted on: Jun 21, 2024
Accepted on: Sep 10, 2024
Published on: Oct 14, 2024
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Honghong Lin, Yun Shang, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.