Have a personal or library account? Click to login
Deterministic Search on Complete Bipartite Graphs by Continuous-Time Quantum Walk Cover

Deterministic Search on Complete Bipartite Graphs by Continuous-Time Quantum Walk

By: Honghong Lin and  Yun Shang  
Open Access
|Oct 2024

Figures & Tables

Figure 1.

Quantum circuit implementation for the oracle in (5)
Quantum circuit implementation for the oracle in (5)

Figure 2.

The possible phase set returned by Algorithm 1 for M = 16. The best estimation for an angle θ is either θ+ or θ−.
The possible phase set returned by Algorithm 1 for M = 16. The best estimation for an angle θ is either θ+ or θ−.

Figure 3.

The eigenphase distribution of U(t0) on the unit circle.
The eigenphase distribution of U(t0) on the unit circle.

Figure 4.

Quantum circuit for implementation of e−iÃt.
Quantum circuit for implementation of e−iÃt.

Figure 5.

Graph K8,4 with vertex |8〉 marked.
Graph K8,4 with vertex |8〉 marked.

Figure 6.

Circuit simulation of the oracle for graph K8,4 with vertex |8〉 marked.
Circuit simulation of the oracle for graph K8,4 with vertex |8〉 marked.

Figure 7.

State counts of the measurement result of the simulation.
State counts of the measurement result of the simulation.

Comparison of previous results and our work on spatial search on complete bipartite graphs_

AlgorithmsModelInitial stateSuccess probability
Wong et al. [28]CG framework for Laplacian walk i=0m+n1|i \sum\nolimits_{i = 0}^{m + n - 1} |i\rangle 1 (m, n → ∞)
CG framework for adjacency walk 12miV1|i+12niV2|i {1 \over {\sqrt {2m}}}\sum\nolimits_{i \in {V_1}} |i\rangle + {1 \over {\sqrt {2n}}}\sum\nolimits_{i \in {V_2}} |i\rangle 1 (m, n → ∞)
Rhodes and Wong [29]Coined DTQW 1m+n(iV1|i1njV2|j+iV2|i1mjV1|j) {1 \over {\sqrt {m + n}}}\left({\sum\nolimits_{i \in {V_1}} |i\rangle \otimes {1 \over {\sqrt n}}\sum\nolimits_{j \in {V_2}} |j\rangle +} \right.\left. {\sum\nolimits_{i \in {V_2}} |i\rangle \otimes {1 \over {\sqrt m}}\sum\nolimits_{j \in {V_1}} |j\rangle} \right) mm+n {m \over {m + n}} or nm+n {n \over {m + n}} (and 1 for a special case)
12mn(i=0m+n1|iji|j) {1 \over {\sqrt {2mn}}}\left({\sum\nolimits_{i = 0}^{m + n - 1} |i\rangle \otimes \sum\nolimits_{j \sim i} |j\rangle} \right) 12 {1 \over 2} (and 1 for a special case)
Xu et al. [30]Coined DTQW 12mn(i=0m+n1|iji|j) {1 \over {\sqrt {2mn}}}\left({\sum\nolimits_{i = 0}^{m + n - 1} |i\rangle \otimes \sum\nolimits_{j \sim i} |j\rangle} \right) ≥ 1 − ɛ for any adjustable parameter ɛ
Our workCTQW 1miV1|i {1 \over {\sqrt m}}\sum\nolimits_{i \in {V_1}} |i\rangle or 1niV2|i {1 \over {\sqrt n}}\sum\nolimits_{i \in {V_2}} |i\rangle 1

j_qic-2024-0001_tab_004

Algorithm 2 : Quantum Phase Estimation (QPE).
Input: A unitary U, initial state |0〉p|ϕ0 (p is the number of qubits in the first register and |ϕ0〉 is an arbitrary state of the second register).
Output: An estimate θ̃ of one of the eigenphases of U.
1: Apply Hadamard gate H to each qubit in the first register.
2: Apply U2j on the second register controlled by qubit j, 1 ≤ jp in the first register.
3: Apply inverse quantum Fourier transform to the first register.
4: Measure the first register in the computational basis and get the result l.
5: Return θ˜=2πlM(M=2p) \tilde \theta = 2\pi {l \over M}(M = {2^p}) .

j_qic-2024-0001_tab_005

Algorithm 3 : Quantum counting for search on complete bipartite graphs.
Input: Unitary U(t0), initial state|0〉p|ψ〉 ( p=log25nπ2δ p = \left\lceil {{{\log}_2}\,{{5n\pi} \over {2\delta}}} \right\rceil is the number of qubits in the first register and δ is the desired precision).
Output: Estimation of the number of marked vertices k with precision δ.
1: Call Algorithm 2 and get the result θ̃.
2: if θ̃ = π
    then discard;
  else
     k˜=(sinθ˜2)2n \tilde k = {\left({\sin {{\tilde \theta} \over 2}} \right)^2}n .
3: Return .

j_qic-2024-0001_tab_003

Algorithm 1 : Deterministic search algorithm on complete bipartite graphs.
Input: A complete bipartite graph Km,n with k marked vertices on the order-n part whose adjacency matrix is A, an oracle O that satisfies equation (5).
Output: A marked vertex.
1: Calculate parameters l=π4nk12 l = \left\lceil {{\pi \over 4}\sqrt {{n \over k}} - {1 \over 2}} \right\rceil and t=2mnarcsin[nksin(π2(2l+1))] t = {2 \over {\sqrt {mn}}}\arcsin \left[ {\sqrt {{n \over k}} \sin ({\pi \over {2(2l + 1)}})} \right] .
2: Construct the initial state |s=1mi=0m1|i |s\rangle = {1 \over {\sqrt m}}\sum\nolimits_{i = 0}^{m - 1} |i\rangle .
3: Perform quantum walk search Ul(t)eiAt2|s=(eiAtO)leiAt2|s {U^l}(t){e^{- iA{t \over 2}}}|s\rangle = {({{\rm{e}}^{- iAt}}O)^l}{{\rm{e}}^{- iA{t \over 2}}}|s\rangle .
4: Measure the final state and get |i〉.
5: Return vertex i.

Comparison of previous results and our work on deterministic spatial search_

AlgorithmsGraphModelNumber of marked vertices
Marsh and Wang [21]2 × n Rook graphAlternating CTQWSingle
Qu et al. [22]Star graphAlternating CTQWSingle
Wang et al. [23]Integer Laplacian spectraAlternating CTQWMultiple
Peng et al. [24]Complete bipartite graphCoined DTQWMultiple
Our workComplete bipartite graphCTQWMultiple
DOI: https://doi.org/10.2478/qic-2024-0001 | Journal eISSN: 3106-0544 | Journal ISSN: 1533-7146
Language: English
Page range: 1 - 15
Submitted on: Jun 21, 2024
Accepted on: Sep 10, 2024
Published on: Oct 14, 2024
Published by: Cerebration Science Publishing Co., Limited
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Honghong Lin, Yun Shang, published by Cerebration Science Publishing Co., Limited
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.