Have a personal or library account? Click to login

Influence of a Magnetic Field on the Structural and Morphological Properties of the Hydrothermal Growth of ZnO Nanostructure

Open Access
|Sep 2025

References

  1. Abdullah, T. A., Juzsakova, T., Rasheed, R. T., Salman, A. D., Adelikhah, M, Cuong, L. P., Cretescu, I. (2021a). V2O5 nanoparticles for dyes removal from water. Chem. J. Moldova, 16 (2), 102–111.
  2. Abdullah, T. A., Nguyen, B. S., Juzsakova, T., Rasheed, R. T., Hafad, S., Mansoor, H., Al-Jammal, N., Salman, A. D., Awad, H. A, Domokos, E., Le, P. C. (2021b). Promotional effect of metal oxides (MxOy=TiO2,V2O5) on multi-walled carbon nanotubes (MWCNTs) for kerosene removal from contaminated water. Materials Lett., 292, 129612.
  3. Abdullah, T. A., Juzsakova, T., Hafad, S. A., Rasheed, R. T., Al-Jammal, N., Mallah, M. A., Aldulaimi, M. (2022a). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technol. Environ. Pol., 24 (2), 519–541.
  4. Abdullah, T. A., Juzsakova, T., Le, P. C., Kułacz, K., Salman, A. D., Rasheed, R. T., Nguyen, D. D. (2022b). Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water. Environ. Poll., 306, 119372.
  5. Abdullah, T. A., Juzsakova, T., Mansoor, H., Salman, A. D., Rasheed, R. T., Hafad, S. A., Nguyen, D. D. (2022c). Polyethylene over magnetite-multiwalled carbon nanotubes for kerosene removal from water. Chemosphere, 287, 132310.
  6. Alqanoo, A. A., Ahmed, N. M., Hashim, M. R., Alsadig, A., Al-Yousif, S, Taya, S. A., Ibnaouf, K. H. (2023). Coating readily available yet thermally resistant surfaces with 3D silver nanowires: A step toward efficient heater fabrication. Coatings, 13 (2), 315.
  7. Bastami, T. R., Entezari, M. H. (2012). Synthesis of manganese oxide nanocrystal by ultrasonic bath: Effect of the external magnetic field. Ultrasonics Sonochemistry, 19 (4), 830–840.
  8. Chiang, Y. F., Kuo, S. M., Liud, C. P., Huang, J. C. A., Yao, W. T., Wu, Y. C. (2014). Tuning of crystal quality and optical properties of hydrothermally synthesized ZnO nanorods by magnetic field. Materials Chem. Phys., 148 (3), 1113–1118.
  9. Giri, P. K. et.al. (2007). Studies on zinc oxide nanorods grown by electron beam evaporation technique. Metal-Organic Nano-Metal Chem., 37, 437–441.
  10. Jin, Y., Zhang, B., Yang, S., Wang, Y., Chen, J. Zhang, H., Huang, C., Cao, C., Cao, H., Chang, R. P. H. (2001). Room temperature UV emission of MgxZn12xO films. Solid State Comm., 119, 409–413.
  11. Kyoung-Kook Kim, K. K., Kim, H. S., Hwang, K., Lim, J. H., Park, S.-J. (2003). Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett, 83, 63–65.
  12. Lao, J. Y., Huang, J. Y., Wang, D. Z., Ren, Z. F., Steeves, D., Kimball, B, Porter, W. (2004). ZnO nanowalls. Applied Phys.,A 78 (4), 539–542.
  13. Look, D. C. (2001). Recent advances in ZnO materials and devices. Mater. Sci. Eng.,B80, 383–387.
  14. Majeed, A, Rasheed, R., Abdullah, T., Mohammed, M. N., Aljibori, H., Abdullah, O. (2023). Preparation, characterization, and nanozyme activity of Fe2O3 and Fe3O4 nanoparticles as acetylcholine esterase. J. Balkan Tribolog. Assoc., 29 (5).
  15. Ohyama, M., Kozuka, H., Yoko, T. (1997). Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films, 306, 78–85.
  16. Salman, D., Juzsakova, T., Al-Mayyahi, M. A., Ákos, R., Mohsen, S., Ibrahim, R. I., Mohammed, H. D., Abdullah, T. A., Domokos, E., Korim, T. (2021). Synthesis, surface modification, and characterization of magnetic Fe3O4@SiO2 core-shell nanoparticles. J. Phys. Confer. Ser., 1773,(1), 012039.
  17. Salman, A. D., Juzsakova, T., Jalhoom, M. G., Le Phuoc, C., Mohsen, S., Adnan Abdullah, T., Zsirka, B., Cretescu, I., Domokos, E., Stan, C. D. (2020). Novel hybrid nanoparticles: Synthesis, functionalization, characterization, and their application in the uptake of scandium (III) ions from aqueous media. Materials, 13 (24), 5727.
  18. Thanh, N. T., Maclean, N., Mahiddine, S. (2014). Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev., 114 (15), 7610–7630.
  19. Wang, J., Chen, Q., Zeng, C., Hou, B. (2004). Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater., 16 (2), 137–140.
  20. Wang, Z., Zhu, M., Li, Y., Jin, H., Zhu, Z., Deng, X., Zeng, R. (2009). Hydrothermal synthesis of ZnO nanostructures under a high pulsed magnetic field. Int. J. Modern Phys., B 23 (17), 3655–3659.
  21. Yanagiya, S. I., Sazaki, G., Durbin, S. D., Miyashita, S., Nakajima, K., Komatsu, H., Motokawa, M. (2000). Effects of a magnetic field on the growth rate of tetragonal lysozyme crystals. J. Crystal Growth, 208 (1–4), 645–650.
DOI: https://doi.org/10.2478/prolas-2025-0010 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 214 - 219
Submitted on: Oct 23, 2024
Accepted on: Jun 2, 2025
Published on: Sep 27, 2025
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2025 Abdulqader D. Faisal, Wafaa K. Khalef, Muhsin Jaber Jweeg, Haitahm T. Hussian, M. N. Mohammed, Thamer Adnan Abdullah, Oday I. Abdullah, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.