Have a personal or library account? Click to login
Neutrophilic Leukocytes and Neutrophil Extracellular Traps in Native Aortic Valve Endocarditis Cover

References

  1. Al-Sali, G., Al-Attar, N., Delbosc, S., Louedec, L., Corvazier, E., Loyau, S., Michel, J. B, Pidard, D., Duval, X., Meilhac, O. (2012). Role of vegetation-associated protease activity in valve destruction in human infective endocarditis. PLoS One; 7 (9), e45695. DOI: 10.1371/journal.pone.0045695.344782423029186
  2. Andrews, R. K., Arthur, J. F., Gardiner, E. E. (2014). Neutrophil extra-cellular traps (NETs) and the role of platelets in infection. Thrombosis Haemostasis, 112 (4), 659–665. https://doi.org/10.1160/TH14-05-0455.10.1160/TH14-05-045525265341
  3. Becerra-Muñoz, V. M., Ruķz-Morales, J., Rodrķguez-Bailón, I., Sánchez-Espķn, G., López-Garrido, M. A., Robledo-Carmona, J., Guijarro-Contreras, A., Garcķa-López, M. V., Ivanova-Georgieva, R., Mora-Navas, L., et al. (2017). Infective endocarditis in patients with bicuspid aortic valve: Clinical characteristics, complications, and prognosis. Enfermed. Infec. Microbiol. Clin., 35 (10), 645–650. https://doi.org/10.1016/j.eimc.2016.06.017.10.1016/j.eimc.2016.06.01727493083
  4. Brinkmann, V. (2018). Neutrophil extracellular traps in the second decade. J. Innate Immun., 10 (5–6), 414–421. https://doi.org/10.1159/000489829.10.1159/000489829678405129909412
  5. Brouqui, P., Raoult, D. (2001). Endocarditis due to rare and fastidious bacteria. Clin. Microbiol. Rev., 14 (1), 177–207. https://doi.org/10.1128/CMR.14.1.177-207.2001.10.1128/CMR.14.1.177-207.20018896911148009
  6. Brumley, D. R., Carrara, F., Hein, A. M., Yawata, Y., Levin, S. A., Stocker, R. (2019). Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natil. Acad. Sci. USA, 166 (22), 10792–10797. https://doi.org/10.1073/pnas.1816621116.10.1073/pnas.1816621116656119131097577
  7. Buijtendijk, M. F. J., Barnett, P., van den Hoff, M. J. B. (2020). Development of the human heart. Amer. J. Med. Gen., 184 (1), 7–22. https://doi.org/10.1002/ajmg.c.31778.10.1002/ajmg.c.31778707896532048790
  8. Butcher, J. T., Nerem, R. M. (2007). Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos. Trans. Roy. Soc. B: Biol. Sci., 362, 1445–1457. https://doi.org/10.1098/rstb.2007.2127.10.1098/rstb.2007.2127244040717569641
  9. Carestia, A., Kaufman, T., Schattner, M. (2016). Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers Immunol., 7, 271. https://doi.org/10.3389/fimmu.2016.00271.10.3389/fimmu.2016.00271493369727458459
  10. Chambers, H. F., Bayer, A. S. (2020). Native-valve infective endocarditis. New Engl. J. Med., 383 (6), 567–576. https://doi.org/10.1056/nejmcp2000400.10.1056/NEJMcp200040032757525
  11. Chirillo, F. (2021). New approach to managing infective endocarditis. Trends Cardiovasc. Med., 31 (5), 277–286. https://doi.org/10.1016/j.tcm.2020.04.008.10.1016/j.tcm.2020.04.00832404251
  12. Etwebi, Z., Landesberg, G., Preston, K., Eguchi, S., Scalia, R. (2018). Mechanistic role of the calcium-dependent protease calpain in the endothelial dysfunction induced by MPO (Myeloperoxidase). Hypertension, 71 (4), 761–770. https://doi.org/10.1161/HYPERTENSIONAHA.117.10305.10.1161/HYPERTENSIONAHA.117.10305646728429507101
  13. Fournier, P. E., Gouriet, F., Casalta, J. P., Lepidi, H., Chaudet, H., Thuny, F., Collart, F., Habib, G., Raoult, D. (2017). Blood culture-negative endocarditis. Medicine (United States), 96 (47), pe8392. https://doi.org/10.1097/MD.0000000000008392.10.1097/MD.0000000000008392570891529381916
  14. Gumpangseth, T., Lekawanvijit, S., Mahakkanukrauh, P. (2020). Histo-logical assessment of the human heart valves and its relationship with age. Anat. Cell Biol., 53 (3), 262–271. https://doi.org/10.5115/acb.20.093.10.5115/acb.20.093752711732727956
  15. Habib, G. (2006). Management of infective endocarditis. Heart, 92 (1), 124–130. https://doi.org/10.1136/hrt.2005.063719.10.1136/hrt.2005.063719186101316365367
  16. Habib, G., Erba, P. A, Iung, B., Donal E., Cosyns, B., Laroche, C., Popescu, B. A., Prendergast, B., Tornos, P., Sadeghpour, A., et al. (2019). Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J., 40 (39), 3222–3232B. DOI: 10.1093/eurheartj/ehz620.31504413
  17. Holland, T. L., Baddour, L. M., Bayer, A. S., Hoen, B., Miro, J. M., Fowler, V. G. (2016). Infective endocarditis. Nat. Rev. Dis. Primers, 2, 16059. https://doi.org/10.1038/nrdp.2016.59.10.1038/nrdp.2016.59524092327582414
  18. Houard, V., Porte, L., Delon, C., Carrié, D., Delobel, P., Galinier, M., Lairez, O., Lavie-Badie Y. (2020). Prognostic value of residual vegetation after antibiotic treatment for infective endocarditis: A retrospective cohort study. Int. J. Infect. Dis., 94, 34–40. https://doi.org/10.1016/j.ijid.2020.03.005.10.1016/j.ijid.2020.03.00532169691
  19. Hsu. C. C., Hsu, R. B., Ohniwa, R. L., Chen, J. W., Yuan, C. T., Chia, J. S., Jung. C. J. (2019). Neutrophil extracellular traps enhance Staphylococcus aureus vegetation formation through interaction with platelets in infective endocarditis. Thromb. Haemostasis, 119 (5), 786–796. https://doi.org/10.1055/s-0039-1678665.10.1055/s-0039-167866530731490
  20. Hu, W., Wang, X., Su, G. (2021). Infective endocarditis complicated by embolic events: Pathogenesis and predictors. Clin. Cardiol., 44 (3), 307–315. https://doi.org/10.1002/clc.23554.10.1002/clc.23554794391133527443
  21. Jung, C. J., Yeh, C. Y., Hsu, R. B., Lee, C. M., Shun, C. T., Chia, J. S. (2015). Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation, 131 (6), 571–581. https://doi.org/10.1161/CIRCULATIONAHA.114.011432.10.1161/CIRCULATIONAHA.114.01143225527699
  22. Kim, J. H., Lee, H. J., Ku, N. S., Lee S. H., Lee, S., Choi, J. Y., Yoem J. S. (2021). Infective endocarditis at a tertiary care hospital in South Korea. Heart, 107 (2), 135–141. DOI: 10.1136/heartjnl-2020-317265.778825733033067
  23. Kim, S. J., Jenne, C.N. (2016). Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin. Immunol., 28 (6), 546–554. https://doi.org/10.1016/j.smim.2016.10.013.10.1016/j.smim.2016.10.01327876233
  24. Kupferwasser, L. I., Bayer, A. S. (2001). Kulturnegative endokarditis: Ätiologie, diagnostik, management und therapie. Herz, 26 (6), 398–408. https://doi.org/10.1007/s00059-001-2314-y.10.1007/s00059-001-2314-y11683070
  25. Lerche, C. J., Schwartz, F., Theut, M., Fosbøl, E. L., Iversen, K., Bundgaard, H., Høiby, N., Moser, C. (2021). Anti-biofilm approach in infective endocarditis exposes new treatment strategies for improved outcome. Frontiers Cell Devel. Biol., 9, 643335. https://doi.org/10.3389/fcell.2021.643335.10.3389/fcell.2021.643335824980834222225
  26. Liesenborghs, L., Meyers, S., Vanassche, T., Verhamme, P. (2020). Coagulation: At the heart of infective endocarditis. Thromb. Haemostasis, 18 (5), 995–1008. https://doi.org/10.1111/jth.14736.10.1111/jth.1473631925863
  27. Luehr, M., Bauernschmitt, N., Peterss, S., Li, Y., Heyn, O., Dashkevich, A., Oberbach, A., Bagaev, E., Pichlmaier, M. A., Juchem, G., et al. (2020). Incidence and surgical outcomes of patients with native and prosthetic aortic valve endocarditis. Ann. Thor. Surg., 110 (1), 93–101. https://doi.org/10.1016/j.athoracsur.
  28. Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stolzfus, A., Borczuk, A. C., Loda, M., et al.(2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136 (10), 1169–1179. https://doi.org/10.1182/blood.2020007008/1747487/blood.2020007008.pdf.
  29. O’Donnell, A., Yutz, K. E. (2020). Mechanisms of heart valve development and disease. Development, 147 (13), dev183020. https://doi.org/10.1242/dev.183020.10.1242/dev.183020733827132620577
  30. Rajani, R., Klein, J. L. (2020). Infective endocarditis: A contemporary update. Clin. Med. J. Roy. Coll. Phys. London, 20 (1), 31–35. DOI: 10.7861/clinmed.cme.20.1.1.696416331941729
  31. Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K. O., Fiane, A., Vaage, J. (2017). Valve interstitial cells: The key to understanding the pathophysiology of heart valve calcification. J. Amer. Heart Assoc., 6 (9), 1–24. https://doi.org/10.1161/JAHA.117.006339.10.1161/JAHA.117.006339563428428912209
  32. Sacks, M. S., Merryman, W. D., Schmidt, D. E. (2009). On the biomechanics of heart valve function. J. Biomech., 42 (12), 1804–1824. https://doi.org/10.1016/j.jbiomech.2009.05.015.10.1016/j.jbiomech.2009.05.015274696019540499
  33. Salem, M., Friedrich, C., Saad, M., Frank, D., Salem, M., Puehler, T., Schoettler, J., Schoeneich, F., Cremer, J., Haneya, A. (2021). Active infective native and prosthetic valve endocarditis: Short-and long-term outcomes of patients after surgical treatment. J. Clin. Med., 10 (9), 1868. https://doi.org/10.3390/jcm10091868.10.3390/jcm10091868812348633925866
  34. Schoen, F. J. (2018). Morphology, clinicopathologic correlations, and mechanisms in heart valve health and disease. Cardiovasc. Eng. Technol., 9 (2), 126–140. https://doi.org/10.1007/s13239-016-0277-7.10.1007/s13239-016-0277-727502286
  35. Sotero, D. F., Rosário, M., Fonseca, A. C., Ferro, M. J. (2019). Neurological complications of infective endocarditis. Curr. Neurol. Neurosci. Rep., 19 (5), 8–94. https://doi.org/10.1007/s11910-019-0935-x.10.1007/s11910-019-0935-x30927133
  36. Tayem, M. G., Shahin, L., Shook, J., Kesselman, M. M. (2022). A review of cardiac manifestations in patients with systemic lupus erythematosus and antiphospholipid syndrome with focus on endocarditis. Cureus, 14 (1), e21698. https://doi.org/10.7759/cureus.21698.10.7759/cureus.21698888445735242470
  37. Trifunovic, D., Vujisic-Tesic, B., Obrenovic-Kircanski, B., Ivanovic, B., Kalimanovska-Ostric, D., Petrovic, M., Boricic-Kostic, M., Matic, S., Stevanovic, G., Marinkovic, J., et al. (2018). The relationship between causative microorganisms and cardiac lesions caused by infective endocarditis: New perspectives from the contemporary cohort of patients. J. Cardiology, 71 (3), 291–298. https://doi.org/10.1016/j.jjcc.2017.08.010.10.1016/j.jjcc.2017.08.01029055511
  38. Yang, A., Tan, C., Daneman, N., Hansen, M. S., Habib, G., Salaun, E., Lavoute, C., Hubert, S., Adhikari, N. K. J. (2019). Clinical and echo-cardiographic predictors of embolism in infective endocarditis: Systematic review and meta-analysis. Clin. Microbiol. Infect., 25 (2), 178–187. https://doi.org/10.1016/j.cmi.2018.08.010.10.1016/j.cmi.2018.08.01030145401
  39. Zegri-Reiriz, I., de Alarcón, A., Muñoz, P., Martķnez Sellés, M., González-Ramallo, V., Miro, J. M., Falces, C., Gonzalez Rico, C., Kortajarena Urkola, X., Lepe, J. A., et al. (2018). Infective endocarditis in patients with bicuspid aortic valve or mitral valve prolapse. J. Amer. Coll. Cardiol., 71 (24), 2731–2740. https://doi.org/10.1016/j.jacc.2018.03.534.10.1016/j.jacc.2018.03.53429903346
DOI: https://doi.org/10.2478/prolas-2023-0005 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 41 - 48
Submitted on: Mar 28, 2022
Accepted on: Aug 2, 2022
Published on: Mar 9, 2023
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Niks Ričards Goldiņš, Kristians Meidrops, Lauma Apine, Eva Petrošina, Pēteris Stradiņš, Valērija Groma, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.