Have a personal or library account? Click to login
Edible Mushrooms Could Take Advantage of the Growth-Promoting and Biocontrol Potential of Azospirillum Cover

Edible Mushrooms Could Take Advantage of the Growth-Promoting and Biocontrol Potential of Azospirillum

Open Access
|Jun 2022

References

  1. Alarcon, A., Davies Jr., F. T., Egilla, J. N., Fox, T. C., Estrada-Luna, A. A., Ferrera-Cerrato, R. (2002). Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Rev. Latinoamer. Microbiol., 44, 31–37.
  2. Ashraf, J., Ali, M.A., Ahmad, W., Ayyub, C.M., Shafi, J. (2013). Effect of different substrate supplements on oyster mushroom (Pleurotus spp.) production. Food Sci. Technol., 1 (3), 44–51.10.13189/fst.2013.010302
  3. Aspray, T. J., Frey-Klett, P., Jones, J. E., Whipps, J. M., Garbaye, J., Bending, G. D. (2006). Mycorrhization helper bacteria: A case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza, 16 (8), 533–541.10.1007/s00572-006-0068-3
  4. Bama, M. E., Ramakrishnan, K. (2010). Effects of combined inoculation of Azospirillum and AM fungi on the growth and yield of finger millet (Eleusine coracana Gaertn) Var. Co 12. J. Exper. Sci., 1 (8), 10–11.
  5. Bamigboye, C. O., Oloke, J. K., Burton, M., Dames, J. F., Lateef, A. (2019). Optimization of the process for producing biomass and exopolysaccharide from the King Tuber Oyster Mushroom, Pleurotus tuber-regium (Agaricomycetes), for biotechnological applications. Int. J. Med. Mushrooms, 21 (4), 311–322.10.1615/IntJMedMushrooms.2019030357
  6. Bashan, Y., De-Bashan, L. E. (2002). Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol., 68 (6), 2637–2643.10.1128/AEM.68.6.2637-2643.2002
  7. Bhat, M. A., Rasool, R., Ramzan, S. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci. Agricult., 3 (1), 23–25.
  8. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P., Perotto, S. (2001). Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem., 45 (1), 39–49.10.4081/1612
  9. Cho, Y. S., Kim, J. S., Crowley, D. E., Cho, B. G. (2003). Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol. Lett., 218 (2), 271–276.10.1016/S0378-1097(02)01144-8
  10. Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P., Varma, A. (2016). Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul., 35 (1), 276–300.10.1007/s00344-015-9521-x
  11. Choudhary, D. K., Varma, A., Tuteja, N. (2017). Mycorrhizal helper bacteria: Sustainable approach. In: Varma, A., Prasad, R., Tuteja, N. (eds.). Mycorrhiza — Function, Diversity, State of the Art.4th edn. Springer International Publishing AG, pp. 61–64.10.1007/978-3-319-53064-2_5
  12. Compant, S., Duffy, B., Nowak, J., Clément, C., Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol., 71 (9), 4951–4959.10.1128/AEM.71.9.4951-4959.2005
  13. Day, J. M., Döbereiner, J. (1976). Physiological aspects of N-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem., 8 (1), 45–50.10.1016/0038-0717(76)90020-1
  14. De S. Pereira-Jr., J. A., Rodrigues, D. P., Peixoto-Filho, R. C., Bastos, I. V. G. A., De Oliveira, G. G., Araújo, J. M., Melo, S. J. (2013). Contribution to pharmacognostic and morphoanatomical studies, antibacterial and cytotoxic activities of Ganoderma parvulum murrill (Basidiomycota, Polyporales, Ganodermataceae). Latin Amer. J. Pharm., 32 (7), 996–1003.
  15. Deveau, A., Brulé, C., Palin, B., Champmartin, D., Rubini, P., Garbaye, J., Sarniguet, A., Frey-Klett, P. (2010). Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ. Microbiol. Rep., 2 (4), 560–568.10.1111/j.1758-2229.2010.00145.x23766226
  16. Duponnois, R,. Lesueur, D. (2004). Sporocarps of Pisolithus albus as an ecological niche for fluorescent pseudomonads involved in Acacia mangium Wild — Pisolithus albus ectomycorrhizal symbiosis. Canad. J. Microbiol., 50 (9), 691–696.10.1139/w04-06015644922
  17. Ebadi, A., Alikhani, H. A., Rashtbari, M. (2012). Effect of plant growth promoting bacteria (PGPR) on the morpho-physiological properties of button mushroom Agaricus bisporus in two different culturing beds. Int. Res. J. Basic Appl. Sci., 3 (1), 203–212.
  18. Febriansyah, E., Saskiawan, I., Mangunwardoyo, W., Sulistiyani, T. R., Widhiya, E. W. (2018). Potency of growth promoting bacteria on mycelial growth of edible mushroom Pleurotus ostreatus and its identification based on 16S rDNA analysis. AIP Conference Proceedings, 2002 (1), 020023.10.1063/1.5050119
  19. Frey-Klett, P., Garbaye, J., Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytol., 176 (1), 22–36.10.1111/j.1469-8137.2007.02191.x
  20. Fu, Y., Li, X., Li, Q., Wu, H., Xiong, C., Geng, Q., Sun, H., Sun, Q. (2016). Soil microbial communities of three major Chinese truffles in southwest China. Canad. J. Microbiol., 62 (11), 970–979.10.1139/cjm-2016-0139
  21. Fukami, J., Cerezini, P., Hungria, M. (2018). Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8 (1), 73/1–73/12.10.1186/s13568-018-0608-1
  22. Gao, Y, Zhou, S, Huang, M, Xu, A. (2003). Antibacterial and antiviral value of the genus Ganoderma P. Karst. species (Aphyllophoromycetideae): A review. Int. J. Med. Mushrooms, 5 (3), 1–12.10.1615/InterJMedicMush.v5.i3.20
  23. Goswami, M., Deka, S. (2020). Plant growth-promoting rhizobacteria — alleviators of abiotic stresses in soil: A review. Pedosphere, 30 (1), 40–61.10.1016/S1002-0160(19)60839-8
  24. Huang, L. H., Lin, H. Y., Lyu, Y. T., Gung, C. L., Huang, C. T. (2019). Development of a transgenic Flammulina velutipes oral vaccine for hepatitis B. Food Technol. Biotechnol., 57 (1), 105–112.10.17113/ftb.57.01.19.5865660030031316282
  25. Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A., Paszczyński, A. (2017). Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev., 41 (6), 941–962.10.1093/femsre/fux049581249329088355
  26. Jayasinghearachchi, H. S., Seneviratae, G. (2010). A mushroom-fungus helps improve endophytic colonization of tomato by Pseudomonas fluorescens through biofilms formation. Res. J. Microbiol., 5 (7), 689–695.
  27. Karthikeyan, V., Ragunathan, R., Johney, J., Kabesh, K. (2019). Production, Optimization and purification of laccase produced by Pleurotus ostreatus MH591763. Res. Rev. J. Microbiol. Virol., 9 (1), 56–64.
  28. Kim, S., Ha, B. S., Ro, H.S. (2015). Current technologies and related issues for mushroom transformation. Mycobiology, 43 (1), 1–8.10.5941/MYCO.2015.43.1.1439737425892908
  29. Kumar, A., Patel, J. S., Meena, V. S., Ramteke, P. W. (2019). Plant growth-promoting rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture. J. Plant Nutr., 42 (11–12), 1402–1415.10.1080/01904167.2019.1616757
  30. Kupryashina, M. A., Petrov, S. V., Ponomareva, E. G., Nikitina, V. E. (2015). Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum. Microbiology, 84 (6), 791–795.10.1134/S0026261715060041
  31. Labutova, N. M. (2009). Interactions between endomycorrhizal fungi and rhizosphere microorganisms [Лабутова Н.М. Взаимоотношения эндо¬микоризных грибов с микроорганизмами ризосферы]. Mikologiya i Fitopatologiya, 43 (1), 3–19.
  32. Levy, A., Chang, B. J., Abbott, L. K., Kuo, J., Harnett, G., Inglis, T. J. J. (2003). Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl. Environ. Microbiol., 69 (10), 6250–6256.10.1128/AEM.69.10.6250-6256.200320118514532087
  33. Loshchinina, E. A., Nikitina, V. E., Tsivileva, O. M., Stepanova, L. V., Ponomareva, E. G., Shelud’ko, A. V. (2006).Morphological-cultural characteristics of the basidiomycete Lentinus edodes on co-cultivation with bacteria of the genus Azospirillum [Лощинина Е. А., Никитина В. Е., Цивилева О. М., Степанова Л. В., Пономарева Е. Г., Шелудько А. В. Морфолого-культуральные характеристики базидиомицета Lentinus edodes при совместном культивировании с бактериями рода Azospirillum]. Vestnik SGAU, 6 (2), 24–26.
  34. Loshchinina, E. A., Tsivileva, O. M., Makarov, O. E., Nikitina, V. E. (2012). Changes in carbohydrate and fatty-acid content of Lentinus edodes mycelium in dual cultures with Azospirillum brasilense. Proceedings of Universities. Appl. Chem. Biotechnol., 2 (3), 64–67.
  35. Mahfuz, S., Song, H., Miao, Y., Liu, Z. (2019). Dietary inclusion of mushroom (Flammulina velutipes) stem waste on growth performance and immune responses in growing layer hens. J. Sci. Food Agricult., 99 (2), 703–710.10.1002/jsfa.923629971802
  36. Majesty, D., Ijeoma, E., Winner, K., Prince, O. (2019). Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutrition, 14 (1), 36–59.
  37. Mutukwa, I. B., Hall-III, C. A., Cihacek, L., Lee, C. W. (2019). Evaluation of drying method and pretreatment effects on the nutritional and antioxidant properties of Oyster mushroom (Pleurotus ostreatus). J. Food Process. Preserv., 43 (4), e13910.10.1111/jfpp.13910
  38. Nam, W. L., Phang, X. Y., Su, M. H., Liew, R. K., Ma, N. L., Rosli, M. H. N. B., Lam, S. S. (2018). Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Sci. Total Environ., 624, 9–16.10.1016/j.scitotenv.2017.12.10829245037
  39. Nie, Y., Jin, Y., Deng, C., Xu, L., Yu, M., Yang, W., Li, B., Zhao, R. (2019). Rheological and microstructural properties of wheat dough supplemented with Flammulina velutipes (mushroom) powder and soluble polysaccha-rides. CyTA-J. Food, 17 (1), 455–462.10.1080/19476337.2019.1596986
  40. Nikitina, V. E., Tsivileva, O. M., Loshchinina, E. A. (2006). Interrelations of xylotrophic basidiomycetes and soil nitrogen-fixing bacteria from the genus Azospirillum. Adv. Med. Mycol., 7, 293–294.
  41. Noman, E., Al-Gheethi, A., Mohamed, R. M. S. R., Talip, B. A. (2019). Myco-remediation of xenobiotic organic compounds for a sustainable environment: A critical review. Topics Curr. Chem., 377 (3), 17/1–17/41.10.1007/s41061-019-0241-831134390
  42. Obase, K. (2019). Bacterial community on ectomycorrhizal roots of Laccaria laccata in a chestnut plantation. Mycoscience, 60 (1), 40–44.10.1016/j.myc.2018.08.002
  43. Ofodile, L. N., Uma, N., Grayer, R. J., Ogundipe, O. T., Simmonds, M. S. J. (2012). Antibacterial compounds from the mushroom Ganoderma colossum from Nigeria. Phytother. Res., 26 (5), 748–751.10.1002/ptr.359822084057
  44. Osińska-Jaroszuk, M., Jaszek, M., Mizerska-Dudka, M., Bùachowicz, A., Rejczak, T. P., Janusz, G., Wydrych, J., Polak, J., Jarosz-Wilkołazka, A., Kandefer-Szerszeń, M. (2014). Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed Res. Int., 2014, 743812/1–743812/10.10.1155/2014/743812412092025114920
  45. Phan, C. W., Wang, J. K., Tan, E. Y. Y., Tan, Y. S., Sathiya Seelan, J. S., Cheah, S. C., Vikineswary, S. (2019). Giant oyster mushroom, Pleurotus giganteus (Agaricomycetes): Current status of the cultivation methods, chemical composition, biological, and health-promoting properties. Food Rev. Int., 35 (4), 324–341.10.1080/87559129.2018.1542710
  46. Prasad, Y., Wesely, W. E. G. (2008). Antibacterial activity of the biomultidrug (Ganoderma lucidum) on multidrug resistant Staphylococcus aureus (MRSA). J. Adv. Biotechnol., 10, 9–16.
  47. Pozdnyakova, N., Dubrovskaya, E., Chernyshova, M., Makarov, O., Golubev, S., Balandina, S., Turkovskaya, O. (2018). The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol., 122 (5), 363–372.10.1016/j.funbio.2018.02.00729665962
  48. Rathore, H., Prasad, S., Kapri, M., Tiwari, A., Sharma, S. (2019). Medicinal importance of mushroom mycelium: Mechanisms and applications. J. Funct. Foods, 56, 182–193.10.1016/j.jff.2019.03.016
  49. Red’kina, T. V. (1990). Fungistatic activity of bacteria of the genus Azospirillum. Agrochem. Soil Sci., 39 (3-4), 465–468.10.1177/014833319003900422
  50. Roy, A., Prasad, P. (2013). Therapeutic potential of Pleurotus ostreatus: A review. Res. J. Pharm.bTechnol., 6 (9), 937–940.
  51. Russo, A., Vettori, L., Felici, C., Fiaschi, G., Morini, S., Toffanin, A. (2008). Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr. S 2/5 plants. J. Biotechnol., 134 (3–4), 312–319.10.1016/j.jbiotec.2008.01.020
  52. Sangeetha, K., Senthilkumar, G., Panneerselvam, A., Sathammaipriya, N. (2019). Cultivation of oyster mushroom (Pleurotus sp.) using different substrates and evaluate their potentials of antibacterial and phyto-chemicals. Int. J. Res. Pharm. Sci., 10 (2), 997–1001.10.26452/ijrps.v10i2.371
  53. Sridevi, S., Ramakrishnan, K. (2010). Effects of combined inoculation of AM Fungi and Azospirillum on the Growth and Yield of Onion (Allium cepa L.). J. Phytol., 2 (1), 88–90.
  54. Shaternikov, A. N., Tsivileva, O. M., Nikitina, V. E. (2018). Bacteria from the Azospirillum genus in the optimization of artificial culture of Pleurotus ostreatus and Ganoderma lucidum mushrooms. Actual Biotechnol., 3 (26), 41–45.
  55. Sridhar, S., Sivaprakasam, E., Balakumar, R., Kavitha, D. (2011). Evaluation of antibacterial and antifungal activity of Ganoderma lucidum (Curtis) P. Karst fruit bodies extracts. World J. Sci. Technol., 1 (6), 8–11.
  56. Siyar, S., Inayat, N., Hussain, F. (2019). Plant growth promoting rhizo-bacteria and plants’ improvement: A mini-review. PSM Biol. Res., 4 (1), 1–5.
  57. Steenhoudt, O., Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24 (4), 487–506.10.1111/j.1574-6976.2000.tb00552.x10978548
  58. Su, A., Ma, G., Xie, M., Ji, Y., Li, X., Zhao, L., Hu, Q. (2019). Characteristic of polysaccharides from Flammulina velutipes in vitro digestion under salivary, simulated gastric and small intestinal conditions and fermentation by human gut microbiota. Int. J. Food Sci. Technol., 54 (6), 2277–2287.10.1111/ijfs.14142
  59. Sundram, S., Meon, S., Seman, I. A., Othman, R. (2011). Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J. Microbiol., 49 (4), 551–557.10.1007/s12275-011-0489-321887636
  60. Teplyakova, T. V., Kosogova, T. A. (2016). Antiviral effect of agaricomycetes mushrooms: Review. Int. J. Med. Mushrooms, 18 (5), 375–386.10.1615/IntJMedMushrooms.v18.i5.10
  61. Tsivileva, O. M., Pankratov, A. N., Nikitina, V. E. (2010). Extracellular protein production and morphogenesis of Lentinula edodes in submerged culture. Mycol. Progr., 9 (2), 157–167.10.1007/s11557-009-0614-4
  62. Tsivileva, O. M., Shaternikov, A. N., Nikitina,V. E. (2020a). Bacteria of the Azospirillum genus for the optimization of the artificial culture of xylotrophic mushrooms [Цивилева О.М., Шатерников А.Н., Никитина В.Е. Бактерии рода Azospirillum в оптимизации искусственного культиви¬ровании высших грибов-ксилотрофов]. Biotekhnologiya, 36 (2), 16–25.10.21519/0234-2758-2020-36-2-16-25
  63. Tsivileva, O. M., Shaternikov, A. N., Nikitina, V. E. (2020b). Culture of xylotrophic macromycete Flammulina velutipes mycelium with azospirilla. Biomics, 12 (2), 232–241.10.31301/2221-6197.bmcs.2020-14
  64. Vetvicka, V., Gover, O., Karpovsky, M., Hayby, H., Danay, O., Ezov, N., Hadar, Y., Schwartz, B. (2019). Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J. Funct. Foods, 54, 81–91.10.1016/j.jff.2018.12.034
  65. Wang, R., Liu, P. G., Wan, S. P., Yu, F. Q. (2015). Study on mycorrhization helper bacteria (MHB) of Tuber indicum. Microbiol. China, 42 (12), 2366–2376.
  66. Wu, G. S., Guo, J. J., Bao, J. L., Li, X. W., Chen, X. P., Lu, J. J., Wang, Y. T. (2013). Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum-a review. Expert Opin. Investig. Drugs, 22 (8), 981–992.10.1517/13543784.2013.80520223790022
  67. Xiang, Q., Luo, L., Liang, Y., Chen, Q., Zhang, X., Gu, Y. (2017). The diversity, growth promoting abilities and anti-microbial activities of bacteria isolated from the fruiting body of Agaricus bisporus. Polish J. Microbiol., 66 (2), 201–207.10.5604/01.3001.0010.783728735315
  68. Young, L. S., Chu, J. N., Hameed, A., Young, C. C. (2013). Cultivable mushroom growth-promoting bacteria and their impact on Agaricus blazei productivity. Pesquisa Agropecuária Brasileira, 48 (6), 636–644.10.1590/S0100-204X2013000600009
  69. Young, L. S., Chu, J. N., Young, C. C. (2012). Beneficial bacterial strains on Agaricus blazei cultivation. Pesquisa Agropecuária Brasileira, 47 (6), 815–821.10.1590/S0100-204X2012000600012
  70. Zarenejad, F., Yakhchali, B., Rasooli, I. (2012). Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J. Microbiol. Biotechnol., 28 (1), 99–104.10.1007/s11274-011-0796-122806784
  71. Zhang, W. R., Liu, S. R., Kuang, Y. B., Zheng, S. Z. (2019). Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology, 47 (1), 97–104.10.1080/12298093.2018.1552648645058630988993
  72. Zhao, R., Hu, Q., Ma, G., Su, A., Xie, M., Li, X., Chen, G., Zhao, L. (2019). Effects of Flammulina velutipes polysaccharide on immune response and intestinal microbiota in mice. J. Funct. Foods, 56, 255–264.10.1016/j.jff.2019.03.031
  73. Zhu, B., Li, Y., Hu, T., Zhang, Y. (2019). The hepatoprotective effect of polysaccharides from Pleurotus ostreatus on carbon tetrachloride-induced acute liver injury rats. Int. J. Biol. Macromol., 131, 1–9.10.1016/j.ijbiomac.2019.03.04330851331
DOI: https://doi.org/10.2478/prolas-2022-0032 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 211 - 217
Submitted on: Jan 21, 2021
|
Accepted on: Nov 2, 2021
|
Published on: Jun 2, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Olga Tsivileva, Andrei Shaternikov, Elena Ponomareva, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.