Have a personal or library account? Click to login

Impact of Long-Fermented Sourdough on the Technological and Prebiotical Properties of Rye Bread

Open Access
|Mar 2022

References

  1. Arendt, E. K., Moroni, A. V. (2013). Sourdough and gluten-free products. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 245–264.10.1007/978-1-4614-5425-0_10
  2. Badel, S., Bernardi, T., Michaud, P. (2011). New perspectives for lactobacilli exopolysaccharides. Biotechnol. Adv., 29 (1), 54–66.10.1016/j.biotechadv.2010.08.01120807563
  3. Baruah, R., Maina, N. H., Katina, K., Juvonen, R., Goyal, A. (2017). Functional food applications of dextran from weissella cibaria RBA12 from pummelo (Citrus maxima). Int. J. Food Microbiol., 242, 124–131.10.1016/j.ijfoodmicro.2016.11.01227992769
  4. Bessmeltseva, M., Viiard, E., Simm, J., Paalme, T., Sarand, I. (2014). Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS ONE, 9 (4), 10–11.10.1371/journal.pone.0095449399167724748058
  5. Boreczek, J., Litwinek, D., Izak, D., Buksa, K., Gawor, J., Gromadka, R., Karol, J., Kowalczyk, M. (2020). Bacterial community dynamics in spontaneous sourdoughs made from wheat, spelt, and rye wholemeal flour. Microbiol. Open, 9 (4), 1–13.10.1002/mbo3.1009714237132045510
  6. Chavan, R. S., Chavan, S. R. (2011). Sourdough technology — a traditional way for wholesome foods: A review. Comprehens. Rev. Food Sci. Food Safety, 10 (3), 169–182.10.1111/j.1541-4337.2011.00148.x
  7. Corsetti, A. (2013). Technology and biodiversity of sourdough yeasts and lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 85–104.
  8. De Vuyst, L., Van Kerrebroeck, S., Leroy, F. (2017). Microbial ecology and process technology of sourdough fermentation. Adv. Appl. Microbiol., 100, 49–160.10.1016/bs.aambs.2017.02.00328732554
  9. Debonne, E., Maene, P., Vermeulen, A., Van Bockstaele, F., Depredomme, L., Vermeir, P., Eechout, M., Devlieghere, F. (2020). Validation of in-vitro antifungal activity of the fermentation quotient on bread spoilage moulds through growth/no-growth modelling and bread baking trials. Lwt – Food Sci. Technol., 117, 108636.10.1016/j.lwt.2019.108636
  10. Donot, F., Fontana, A., Baccou, J. C., Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87 (2), 951–962.10.1016/j.carbpol.2011.08.083
  11. Farias, D. de P., de Araújo, F. F., Neri-Numa, I. A., Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol., 93, 23–35.10.1016/j.tifs.2019.09.004
  12. Gobbetti, M., Gänzle, M. (2013a). Physiology and biochemistry of lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 279–285.10.1007/978-1-4614-5425-0_12
  13. Gobbetti, M., Gänzle, M. (2013b). Perspectives. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 279–285.10.1007/978-1-4614-5425-0_12
  14. Gänzle, M. G., Zheng, J. (2019). Lifestyles of sourdough lactobacilli – do they matter for microbial ecology and bread quality? Int. J. Food Microbiol., 302, 15–23.10.1016/j.ijfoodmicro.2018.08.01930172443
  15. Hermann, M., Petermeier, H., Vogel, R. F. (2015). Development of novel sourdoughs with in situ formed exopolysaccharides from acetic acid bacteria. Eur. Food Res. Technol., 241 (2), 185–197.10.1007/s00217-015-2444-8
  16. Huys, G., Daniel, H. M., Vuyst, L. D (2013). Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In: Gobbetti, M., Gänzle, M. (eds.). Handbook on Sourdough Biotechnology. Springer Science, Business Media, New York, pp. 105–154.10.1007/978-1-4614-5425-0_5
  17. Ispirli, H., Demirbaş, F., Yüzer, M. O., Dertli, E. (2018). Identification of lactic acid bacteria from spontaneous rye sourdough and determination of their functional characteristics. Food Biotechnol., 32 (3), 222–235.10.1080/08905436.2018.1507913
  18. Kaditzky, S., Vogel, R. F. (2008). Optimization of exopolysaccharide yields in sourdoughs fermented by lactobacilli. Eur. Food Res. Technol., 228 (2), 291–299.10.1007/s00217-008-0934-7
  19. Kajala, I., Mäkelä, J., Coda, R., Shukla, S., Shi, Q., Maina, N. H., Juvonen, M., Ekholm, P., Goyal, A., Tenkanen, M., Katina, K. (2016). Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran. Appl. Microbiol. Biotechnol., 100 (8), 3499–3510.10.1007/s00253-015-7189-626649737
  20. Koistinen, V. M., Mattila, O., Katina, K., Poutanen, K., Aura, A. M., Hanhineva, K. (2018). Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep., 8 (1), 1–11.10.1038/s41598-018-24149-w589028929632321
  21. Korakli, M., Gänzle, M. G., Vogel, R. F. (2002). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol., 92 (5), 958–965.10.1046/j.1365-2672.2002.01607.x11972702
  22. Kozlinskis, E. (2011). Development of microbial populations in spontaneous rye bread sourdoughs. Summary of Doctoral thesis. Latvia University of Agriculture, Jelgava, Latvia. 66 pp. https://llufb.llu.lv/dissertation-summary/food-microbiology/Emils-Kozlinskis_promocijas_darba_kopsavilkums_2011_LLU_PTF.pdf (accessed 10 October 2020).
  23. Lacaze, G., Wick, M., Cappelle, S. (2007). Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiol., 24 (2), 155–160.10.1016/j.fm.2006.07.01517008159
  24. Lynch, K. M., Coffey, A., Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Res. Int., 110, 52–61.10.1016/j.foodres.2017.03.01230029706
  25. Oleksy-Sobczak, M., Klewicka, E., Piekarska-Radzik, L. (2020). Exopolysaccharides production by Lactobacillus rhamnosus strains: Optimization of synthesis and extraction conditions. LWT – Food Sci. Technol., 122, 109055.10.1016/j.lwt.2020.109055
  26. Păcularu-Burada, B., Georgescu, L. A., Bahrim, G. E. (2020). Current approaches in sourdough production with valuable characteristics for technological and functional applications. Ann. Univ. Dunarea de Jos of Galati, Fascicle VI Food Technol., 44 (1), 132–148.10.35219/foodtechnology.2020.1.08
  27. Poutanen, K., Flander, L., Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol., 26 (7), 693–699.10.1016/j.fm.2009.07.01119747602
  28. Quattrini, M., Liang, N., Fortina, M. G., Xiang, S., Curtis, J. M., Gänzle, M. (2019). Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol., 302, 8–14.10.1016/j.ijfoodmicro.2018.09.00730220438
  29. Rühmkorf, C., Jungkunz, S., Wagner, M., Vogel, R. F. (2012). Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol., 32 (2), 286–294.10.1016/j.fm.2012.07.00222986191
  30. Sanalibaba, P., Cakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Appl. Microbiol., 2 (2), 1000115.10.4172/2471-9315.1000115
  31. Savkina, O., Kuznetsova, L., Burykina, M., Kostyuchenko, M., Parakhina, O. (2020). The influence of the flour amylolytic enzymes activity, dosage of ingredients and bread making method on the sugar content and the bread quality. Agron. Res., 18 (Special Issue 3), 1873–1887.
  32. Siepmann, F. B., Sousa de Almeida, B., Waszczynskyj, N., Spier, M. R. (2019). Influence of temperature and of starter culture on biochemical characteristics and the aromatic compounds evolution on type II sourdough and wheat bread. LWT – Food Sci. Technol., 108, 199–206.10.1016/j.lwt.2019.03.065
  33. Sun, L., Li, X., Zhang, Y., Yang, W., Ma, G., Ma, N., Hu, Q., Pei, F. (2020). A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control, 109, 106914.10.1016/j.foodcont.2019.106914
  34. Therdthai, N. (2014). Fermentation. In: Zhou, W. (Ed.). Bakery Products Science and Technology. Second Edition. John Wiley & Sons, pp. 326–334.10.1002/9781118792001.ch18
  35. Tieking, M., Gänzle, M. G. (2005). Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol., 16 (1–3), 79–84.10.1016/j.tifs.2004.02.015
  36. Torrieri, E., Pepe, O., Ventorino, V., Masi, P., Cavella, S. (2014). Effect of sourdough at different concentrations on quality and shelf life of bread. LWT – Food Sci. Technol., 56 (2), 508–516.10.1016/j.lwt.2013.12.005
  37. Tsafrakidou, P., Michaelidou, A. M., Biliaderis, C. G. (2020). Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods, 9 (6), 734.10.3390/foods9060734735353432503142
  38. Tsuda, H., Okuda, S., Haraguchi, T., Kodama, K. (2019). Influence of exopolysaccharide on the growth of lactic acid bacteria. Italian J. Food Sci., 31 (2), 233–242.
  39. Viiard, E., Bessmeltseva, M., Simm, J., Talve, T., Aaspõllu, A., Paalme, T., Sarand, I. (2016). Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PLoS ONE, 11 (2), 5–6.10.1371/journal.pone.0148325474396026849134
  40. Waldherr, F., Vogel, R. F. (2009). Commercial exploitation of homo-exopolysaccharides in non-dairy food. In: Ullrich, M. (Ed.). Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, Poole, pp. 313–329.
  41. Wang, Y., Trani, A., Knaapila, A., Hietala, S., Coda, R., Katina, K., Maina, N. H. (2020). The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocolloids, 106, 105913.10.1016/j.foodhyd.2020.105913
  42. Weckx, S., Van der Meulen, R., Maes, D., Scheirlinck, I., Huys, G., Vandamme, P., De Vuyst, L. (2010). Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol., 27 (8), 1000–1008.10.1016/j.fm.2010.06.00520832677
  43. Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y., Lü, X. (2019). Exopolysaccharides produced by lactic acid bacteria and bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids, 94, 475–499.10.1016/j.foodhyd.2019.03.032
DOI: https://doi.org/10.2478/prolas-2022-0001 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 1 - 8
Submitted on: Mar 22, 2021
Accepted on: Jan 12, 2022
Published on: Mar 3, 2022
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Rūta Mūrniece, Dace Kļava, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.