Have a personal or library account? Click to login

Oleic Acid Glycerides Content in the Oils of Maize Endospermic Mutants and Its Dependence on Temperature During Ripening

Open Access
|Nov 2021

References

  1. Belo, A., Zheng, P., Luck, S., Shen, B., Meyer, D. J., Li, B., Tingey, S., Rafalski, A. (2008). Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol. Genet. Genom., 279 (1), 1–10.10.1007/s00438-007-0289-y17934760
  2. Boyer, C. D, Hannah, L. C. (2001). Kernel mutants of maize. In: Hallauer, A. R. (Ed.). Specialty maizes. 2nd edn. CRC Press, Boca Raton-London-New-York-Washington D.C., pp. 8–38.
  3. Canvin, D. T. (2011). The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Canad. J. Bot., 43 (1), 63–69.
  4. Changizi, M., Choucan, R., Heravan, E. M., Bihamta, M. R., Darvish, F. (2014). Evaluation of genotype_environment interaction and stability of maize hybrids and relationship among univariate parametric methods. Canad. J. Plant Sci., 94 (7), 1255–1267.10.4141/cjps2013-386
  5. Coe, E. H., Schaeffer, M. L. (2005). Genetic, physical, maps, and database resources for maize. Maydica, 50 (3), 285–303.
  6. Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra, J., Buckler, E. S., Flint-Garcia, S. A. (2012). Genetic architecture of maize kernel composition in the nested association mapping and in-bred association panels. Plant Physiol., 158 (2), 824–834.10.1104/pp.111.185033327177022135431
  7. Dar, A. A., Choudhury, A. R., Kancharla, P. K., Arumugam, N. (2017). The FAD2 gene in plants: Occurrence, regulation, and role. Front. Plant Sci., 8, 1789.10.3389/fpls.2017.01789565152929093726
  8. De Alzaa, F., Guillaume, C., Ravetti, L. (2018). Evaluation of chemical and physical changes in different commercial oils during heating. Acta Sci. Nutr. Health, 2 (6), 2–11.
  9. Dospekhov, B. A. (2011). Techniques of Field Experiment (With the Basics of Statistical Processing of Research Results) [Доспехов, Б. А. Методика полевого опыта (с основами статистической обработки результатов исследований)]. 6th edn. Alliance, Moscow. 350 pp. (in Russian).
  10. Egesel, C. O., Kahriman, F., Gul, M. K. (2011). Discrimination of maize inbreds for kernel quality traits and fatty acid composition by a multivariate technique. Acta Sci. Agron., 33 (4), 613–620.10.4025/actasciagron.v33i4.11031
  11. Gavrilova, V., Shelenga, T., Porokhovinova, E., Dubovskaya, A., Kon’kova, N., Grigoryev, S., Podolnaya, L., Konarev, A., Yakusheva, T., Kishlyan, N., Pavlov, A., Brutch, N. (2020). The diversity of fatty acid composition in traditional and rare oil crops cultivated in Russia. Bio. Comm., 65 (1), 68–81.10.21638/spbu03.2020.106
  12. Gutsol, V. V., Zhuravel, I. A., Guryeva, I. G., Kislichenko, V. S. (2015). The studGutsol, V. V., Zhuravel, I. A., Guryeva, I. G., Kislichenko, V. S. (2015). The study of fatty acids in the seeds of lettuce variety “Lollo Rosso” [Гуцол, В. В., Журавель, И. А., Гурьева, И. Г., Кисличенко, В. С. Изучение жирных кислот в семенах салата сорта «Лолло Россо»]. Bulletin of the Kazakh National Medical University, 4, 476–478 (in Russian).
  13. Karakor, K., Cam, M. (2015). Effects of oleic acid. Med. Sci. Discov., 2 (1), 125–132.10.36472/msd.v2i1.53
  14. Leao, J. D., Bouillon, V., Muntada, L., Johnson, C., Wilson, P., Vergness, O., Dano, C., Igartua, A., Mendoza, G. (2016). New formulations of sunflower based bio-lubricants with high oleic acid content – VOSOLUB project. Oils & Fats Crops Lipids, 23 (5), D 509.10.1051/ocl/2016033
  15. Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., Liu, J., Warburton, M. L., Cheng, Y., Hao, X., Zhang, P., Zhao, J., Liu, Y., Wang, G., Li, J., Yan, J. (2012). Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genet., 45 (1), 43–50.
  16. Li, Q., Zheng, Q., Shen, W., Cram, D., Fowler, D. B., Wei, Y., Zou, J. (2015). Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. The Plant Cell, 27 (1), 86–103.10.1105/tpc.114.134338433058525564555
  17. Likhovid, P. V. (2015). Sweet maize Cultivation Technology Under the Irrigated Conditions (scientific-production edition) [Лиховид, П. В. Техно¬логия выращивания кукурузы сахарной на поливных землях (научно-производственное издание)], Diamond trading tour, Warszawa. 52 pp. (in Russian).
  18. Long, W., Hu, M., Gao, J., Chen, S., Zhang, J., Cheng, L., Pu, H. (2018). Identification and functional analysis of two new mutant BnFAD2 alleles that confer elevated oleic acid content in rapeseed. Front. Genet., 9, 399.10.3389/fgene.2018.00399615838830294343
  19. Menard, G. N., Moreno, J. M., Bryant, F. M., Munoz-Azcarate, O., Kelly, A. A., Hassani-Pak, K., Kurup, S., Eastmond, P. J. (2017). Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiol., 173 (3), 1594–1605.10.1104/pp.16.01907533867928108698
  20. Motto, M., Balconi, C., Hartings, H., Rossi, V. (2010). Gene discovery for improvement of kernel quality-related traits in maize. Genetica, 42 (1), 23–56.10.2298/GENSR1001023M
  21. Murphy, D. J. (2014). Using modern plant breeding to improve the nutritional and technological qualities of oil crops. Oils. Fats Crops Lipids, 21 (6), D 607.10.1051/ocl/2014038
  22. Parcell, J., Kojima, Y., Roach, A., Cain, W. (2018). Global edible vegetable oil market trends. Biomed. J. Sci. Tech. Res., 2 (1), 2282–2291.
  23. Pelly, J. (2012). Fatty acid and triglyceride metabolism. In: Pelly, J. Elsevier’s Integrated Review Biochemistry.2nd edn. Elsevier, Philadelphia, PA, pp. 81–88.10.1016/B978-0-323-07446-9.00010-6
  24. Rajendran, A., Chaudhary, D., Mahajan, V. (2017). maize oil research and improvement: Review. J. Crop Weed, 13 (2), 247–252.
  25. Rolletschek, H., Borisjuk, L. Sanchez-Garcia, A., Gotor, C., Romero, L. C., Martinez-Rivas, J. M., Mancha, M. (2007). Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J. Exp. Bot., 58 (12), 3171–3181.10.1093/jxb/erm15417905732
  26. Shulte, L., Ballard, T., Samarakoon, T., Yao, L., Valdani, L., Staggenborg, P., Rezac, M. (2013). Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Industr. Crops Products, 51 (2), 212–219.10.1016/j.indcrop.2013.08.075
  27. Vanhercke, T., Wood, C. C., Stymme, S., Singh, S. P., Green, A. G. (2013). Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol. J., 11 (2), 197–210.10.1111/pbi.1202323190163
  28. Vukolov, E. A. (2008). Foundations of Statistical Analysis. Workshop on Statistical Methods and Operations Research Using the Statistica and Exel Packages: Tutorial [Вуколов Э. А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с помощью пакетов Statistica и Excel: учебное пособие]. 2nd edn. Forum, Moskow, 464 pp. (in Russian).
  29. Wassom, J. J., Mikkilineni, V., Bohn, M. O., Rocheford, T. R. (2008). QTL for fatty acid composition of maize kernel oil in Illinois High Oil × B73 backcross-derived lines. Crop Sci., 48 (1), 69–78.10.2135/cropsci2007.04.0208
  30. Wilson, R. F. (2012). The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil. J. Oleo. Sci., 61 (7), 357–367.10.5650/jos.61.35722790166
  31. Yang, X., Guo, Y., Yan, J., Zhang, J., Song, T., Rocheford, T., Li, J.-S. (2010). Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120 (3), 665–678.10.1007/s00122-009-1184-119856173
  32. Yara-Varon, E., Li, Y., Barcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.-S., Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo — extraction, purification and formulation of food and natural products. Molecules, 22, 1474.10.3390/molecules22091474615161728872605
  33. Zhao, X., Wei, J., He, L., Zhang, Y., Zhao, Y., Xu, X., Wei, Y., Ge, S., Ding, D., Liu, M., Gao, S., Xu, J. (2019). Identification of fatty acid desaturases in maize and their differential responses to low and high temperature. Genes, 10, 445.10.3390/genes10060445662721831210171
DOI: https://doi.org/10.2478/prolas-2021-0059 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 403 - 410
Submitted on: Nov 25, 2020
Accepted on: May 29, 2021
Published on: Nov 15, 2021
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2021 Dmytro S. Tymchuk, Iurii Sadovnichenko, Nataliya Tymchuk, Halyna Potapenko, Inna Torianyk, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.