References
- Anonymous (2012). Commission Regulation (EU) No 231/2012. Official Journal of the European Union, 55, 1–300.
- Argenta, A. B., Scheer, A. D. P. (2020). Membrane separation processes applied to whey: A Review. Food Rev. Int., 36 (5), 499–528.10.1080/87559129.2019.1649694
- Barile, D., Tao, N., Lebrilla, C. B., Coisson, J. D., Arlorio, M., German, J. B. (2009). Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int. Dairy J., 19 (9), 524–530.10.1016/j.idairyj.2009.03.008280500420161544
- Chandrapala, J., Chen, G. Q., Kezia, K., Bowman, E. G., Vasiljevic, T., Kentish, S. E. (2016). Removal of lactate from acid whey using nanofiltration. J. Food Eng., 177, 59–64.10.1016/j.jfoodeng.2015.12.019
- Chandrapala, J., Duke, M. C., Gray, S. R., Zisu, B., Weeks, M., Palmer, M., Vasiljevic, T. (2015). Properties of acid whey as a function of pH and temperature. J. Dairy Sci., 98 (7), 4352–4363.10.3168/jds.2015-943525958284
- Das, R., Sen, D., Sarkar, A., Bhattacharyya, S., Bhattacharjee, C. (2011). A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor. Ind. Eng. Chem. Res., 50 (2), 806–816.10.1021/ie1016333
- Demirhan, I. N., Kilic, D., Ozbek, B. (2008). Product inhibition of whey lactose hydrolysis. Chem. Eng. Commun., 195 (3), 293–304.
- Jurado, E., Camacho, F., Luzón, G., Vicaria, J. M. (2004). Kinetic models of activity for ß-galactosidases: Influence of pH, ionic concentration and temperature. Enzyme. Microb. Tech., 34 (1), 33–40.10.1016/j.enzmictec.2003.07.004
- Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chem., 20 (8), 1824–1834.10.1039/C8GC00517F
- Mano, M. C. R., Paulino, B. N., Pastore, G. M. (2019). Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Res. Int., 124, 78–85.10.1016/j.foodres.2018.09.01931466653
- Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A., Villamiel, M. (2008). Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by ß-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem., 107 (1), 258–264.10.1016/j.foodchem.2007.08.011
- Meng, H., Li, D., Zhu, C. (2018). The effect of ultrasound on the properties and conformation of glucoamylase. Int. J. Biol. Macromol., 113, 411–417.10.1016/j.ijbiomac.2018.02.12929476862
- Otieno, D. O. (2010). Synthesis of ß-galactooligosaccharides from lactose using microbial ß-galactosidases. Compr. Rev. Food Sci. F, 9 (5), 471–482.10.1111/j.1541-4337.2010.00121.x33467831
- Rajakala, P., Karthigai Selvi, P. (2006). The effect of pH, temperature and alkali metal ions on the hydrolsis of whey lactose catalysed by ß-galactosidase from Kluyveromyces marxianus. Int. J. Dairy Sci., 1, 167–172.10.3923/ijds.2006.167.172
- Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., dos Santos, J. C. S., Barros Gonçalves, L. R. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochem., 75, 99–120.10.1016/j.procbio.2018.09.003
- Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Plou, F. J. (2014). Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chem., 145, 388–394.10.1016/j.foodchem.2013.08.06024128493
- Sady, M., Yna Jaworska, G., Grega, T., Bernas, E., Bernas, B., Domagaí, J. (2013). Application of acid whey in orange drink production. Food Technol. Biotech., 51 (2), 266–277.
- Sankarraj, N., Nallathambi, G. (2018). Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydr. Polym., 191, 95–102.10.1016/j.carbpol.2018.02.06729661327
- Tanguya, G., Tuler-Perrone, I., Dolivet, A., Santellani, A. C., Leduc, A., Jeantet, R., Schuck, P., Gaucheron, F. (2018). Calcium citrate insolubilization drives the fouling of falling film evaporators during the concentration of hydrochloric acid whey. Food Res. Int., 116 (April), 175–183.
- Sampaio, F. C., de Faria, J. T., da Silva, M. F., de Souza Oliveira, R. P., Converti, A. (2019). Cheese whey permeate fermentation by Kluyveromyces lactis: A combined approach to wastewater treatment and bioethanol production. Environ. Technol., 1–9, doi: 10.1080/09593330.2019.1604813.10.1080/09593330.2019.160481330955482
- Saqib, S., Akram, A., Halim, S. A., Tassaduq, R. (2017). Sources of ß-galactosidase and its applications in food industry. 3 Biotech, 7 (1), 1–7.
- Soares, A. de S., Augusto, P. E. D., Leite Júnior, B. R. de C., Nogueira, C. A., Vieira, É. N. R., de Barros, F. A. R., Stringheta, P. C., Ramos, A. M. (2019). Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT (Lebensmittel-Wissenschaft & Technologie), 107, 164–170.10.1016/j.lwt.2019.02.083
- Vasileva, N., Ivanov, Y., Damyanova, S., Kostova, I., Godjevargova, T. (2016). Hydrolysis of whey lactose by immobilized ß-galactosidase in a bioreactor with a spirally wound membrane. Int. J. Biol. Macromol., 82, 339–346.10.1016/j.ijbiomac.2015.11.02526586589
- Wang, X., Duan, D., Fu, X. (2016). Enzymatic desulfation of the red seaweeds agar by Marinomonas arylsulfatase. Int. J. Biol. Macromol., 93, 600–608.10.1016/j.ijbiomac.2016.08.03127521846
- Wronkowska, M., Juúkiewicz, J., Zduńczyk, Z., Warechowski, J., Soral-Úmietana, M., Jadacka, M. (2018). Effect of high added-value components of acid whey on the nutritional and physiological indices of rats. J. Funct. Foods, 50, 63–70.10.1016/j.jff.2018.09.019
- Zolnere, K., Ciprovica, I. (2019). Lactose hydrolysis in different solids content whey and milk permeates. In: Proceedings of the 13th Baltic Conference on Food Science and Technology FOODBALT 2019 joined with 5th North and East European Congress on Food NEEFood 2019, May 2–3, 2019, Jelgava, Latvia, pp. 35–39.10.22616/FoodBalt.2019.011