Have a personal or library account? Click to login

References

  1. Benny, P., Badowski, C., Lane, E. B., Raghunath, M. (2016). Improving 2D and 3D skin in vitro models using macromolecular crowding. J. Vis. Exp., doi: 103791/53642.
  2. Bernstam, L. I., Vaughan, F. L., Bernstein, I. A. (1986). Keratinocytes grown at the air-liquid interface. In Vitro Cell Dev. Biol.,22, 695–705.10.1007/BF02621086
  3. Bottcher-Haberzeth, S., Biedermann, T., Reichmann, E. (2010). Tissue engineering of skin. Burns, 36, 450–460.10.1016/j.burns.2009.08.016
  4. Boyce, S. T. (2001). Design principles for composition and performance of cultured skin substitutes. Burns,27, 523–533.10.1016/S0305-4179(01)00019-5
  5. Boyce, S. T. (1996). Cultured skin substitutes: Review. Tissue Eng., 2, 255–266.10.1089/ten.1996.2.25519877957
  6. Chung, E., Rybalko, V. Y., Hsieh, P. L., Leal, S. L., Samano, M. A., Willauer, A. N., Stowers, R. S., Natesan, S., Zamora, D. O., Christy, R. J., Suggs, L. J. (2016). Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen.,24 (5), 810–819.10.1111/wrr.1245927348084
  7. Erdag, G., Morgan J. R. (2004). Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant, 13 (6), 701–712.10.3727/00000000478398359415648740
  8. Harrison, C. A., MacNeil, S. (2008). The mechanism of skin graft contraction: An update on current research and potential future therapies. Burns, 34, 153–163.10.1016/j.burns.2007.08.01118226455
  9. Komi-Kuramochi, A., Kawano, M., Oda, Y., Asada, M., Suzuki, M., Oki, J., Imamura, T. (2005). Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol., 186 (2), 273–89.10.1677/joe.1.0605516079254
  10. Negri, S., Federici, G., Farinato, S.., Fila, C. (2009). Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. J. Clin. Rehab. Tissue Eng. Res., 13 (47), 9211–9216.
  11. Pillet., F., Gibot, L., Madi, M., Rols, M. P., Dague. E. (2017). Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication,9 (2), 025017.10.1088/1758-5090/aa6ed528493850
  12. Yannas, I. V., Burke, J. F. (1980). Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res., 14, 65–81.10.1002/jbm.8201401086987234
DOI: https://doi.org/10.2478/prolas-2020-0003 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 12 - 17
Submitted on: Jan 28, 2019
Accepted on: Sep 23, 2019
Published on: Feb 27, 2020
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2020 Ēriks Jakobsons, Kristaps Ērglis, Anna Ramata-Stunda, Ilze Blāķe, Liene Patetko, Simona Tīcmane, Beatrise Lūcija Rupaine, Mārtiņš Ērglis, Māra Ērgle, Eva Strīķe, Uldis Strazdiņš, Silvesters Rubīns, Andris Rubīns, Andrejs Ērglis, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.