Have a personal or library account? Click to login
Influence of Steam Treatment and Drying on Carrots Composition and Concentration of Phenolics, Organic Acids and Carotenoids Cover

Influence of Steam Treatment and Drying on Carrots Composition and Concentration of Phenolics, Organic Acids and Carotenoids

Open Access
|May 2018

References

  1. Afify, Ael-M., El-Beltagi, H. S., Abd El-Salam, S. M., Omran, A. A. (2012). Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pacific J. Trop. Biomed., 2 (3), 203–209.10.1016/S2221-1691(12)60042-2
  2. Anonymous (2011). Russian National standard ГОСТ P 54058-2010. Functional Food. Method for determination of carotenoids. Russia, Moscow, 2011. Available from: http://www.internet-law.ru/gosts/gost/50791/ (accessed 31.01.2016) (in Russian)
  3. Bae, H., Kyon, Yun S., Hae Jun, J., Koo Yoon, I., Young Nam, E., Hyun Kwon, J. (2014). Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Quality, 87, 24–29.
  4. Baydar, N. G., Baydar, H. (2013). Phenolic compounds, antiradical activity and antiradical capacity of oil-bearing rose (Rosa damascene Mill.) extracts. Industr. Crops Prod., 41, 375–380.10.1016/j.indcrop.2012.04.045
  5. Chen, H., Zuo, Y., Deng, Y. (2001). Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A, 913, 387–395.10.1016/S0021-9673(00)01030-X
  6. Dall’Acqua, S., Miolo, G., Innocenti, G., Caffieri, S. (2012). The photodegradation of quercetin: Relation to oxidation. Molecules, 17, 8898–8907.10.3390/molecules17088898626811922836209
  7. Erkan, N., Cetin, H., Ayranci, E. (2011). Antioxidant activities of Sideritis congesta Davis et Huber-Morath and Sideritis araguta Boiss et Heldr: Identification of free flavonoids and cinnamic acid derivatives. Food Res. Int., 44, 297–303.10.1016/j.foodres.2010.10.016
  8. Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., Fernandez-Gutierrez, A. (2010). Phenolic–compound–extraction systems for fruit and vegetable samples. Molecules, 15, 8813–8826.10.3390/molecules15128813625935321131901
  9. Gawlic-Dziki, U. (2012). Dietary spices as natural effectors of lipoxygenase, xanthine oxidase, peroxidase and antioxidant agents. LWT-Food Sci. Technol., 47, 138–146.10.1016/j.lwt.2011.12.022
  10. Goncalves, E. M., Pinheiro, J., Abreu, M., Brandao, T. R. S., Silva, C. L. M. (2010). Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J. Food Eng., 97, 574–581.10.1016/j.jfoodeng.2009.12.005
  11. Hernandez-Carrion, M., Hernando, I., Quiles, A. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innov. Food Sci. Emerg. Technol., 26, 76–85.10.1016/j.ifset.2014.06.004
  12. Isabelle, M., Lee B. L, Lim, M. T., Koh, W. P., Huang, D., Ong, C. N. (2010). Antioxidant activity and profiles of common vegetables in Singapore. Food Chem., 120, 993–1003.10.1016/j.foodchem.2009.11.038
  13. Kapoor, S., Aggarwal, P. (2015). Drying method affects bioactive compounds and antioxidant activity of carrot. Int. J. Veget. Sci., 21 (5), 467–481.10.1080/19315260.2014.895474
  14. Karam, M. C., Petit, J., Zimmer, D., Djantou, E. B., Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. J. Food Eng., 188, 32–49.10.1016/j.jfoodeng.2016.05.001
  15. Karasu, S., Kilicli, M., Baslar, M., Arici, M., Sagdic, O., Karaagalci, M. (2015). Dehydration kinetics and changes of bioactive compounds of tulip and poppy petals as a natural colorant under vacuum and oven conditions. J. Food Proc. Preserv., 39, 2096–2106.10.1111/jfpp.12453
  16. Lazarova, I., Zengin, G., Aktumsek, A., Gevrenova, R., Ceylan, R., Uysal, S. (2014). HPLC-DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Industr. Crops Prod., 61, 438–441.10.1016/j.indcrop.2014.07.044
  17. Lombrana, J. I., Rogriguez, R., Ruiz, U. (2010). Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innov. Food Sci. Emerg. Technol., 11, 652–660.10.1016/j.ifset.2010.06.007
  18. Ložiene, K., Venskutonis, P.R., Šipailiene, A., Labokas, J. (2007). Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem., 103, 546–559.10.1016/j.foodchem.2006.08.027
  19. Luthria, D. L. (2008). Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem., 107, 745–752.10.1016/j.foodchem.2007.08.074
  20. Martin-Belloso, O., Odrizola-Serrano, I., Soliva-Fortuny, R. (2012). Vitamin C. In: Handbook of Analysis of Active Compounds in Functional Foods. Chapter 11. Nollet, L. M. L., Toldra, F. (eds.). CRC Press Taylor& Francis Group, pp. 195–218.10.1201/b11653-14
  21. Mazzeo, T., N’Dri, D., Chiavaro, E., Visconti, A., Fogliano, V. (2011). Effect of two cooking procedures on phytochemical compounds, total antioxidant capacity and colour of selected frozen vegetables. Food Chem., 128, 627–633.10.1016/j.foodchem.2011.03.070
  22. Murador, D. C., de Cunha, D. T., de Rosso, V. V. (2012). Effects of cooking techniques on vegetable pigments: A meta-analytic approach to carotenoid and anthocyanin levels. Food Res. Int., 65, 177–183.10.1016/j.foodres.2014.06.015
  23. Natic, M. M., Dabic, D. C., Papetti, A., Fotiric Aksic, M. M., Ognjanov, V., Ljubojevic, M., Tesic, Z. Lj. (2015). Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem., 171, 128–136.10.1016/j.foodchem.2014.08.10125308652
  24. Olivera, F. D., Vina, S. Z., Marani, C. M., Ferreyra, R. M., Mugridge, A., Chaves, A. R., Mascheroni, R. H. (2008). Effect of blanching on the quality of Brussels sprouts (Brassica olearacea L. gemmifera DC) after frozen storage”. J. Food Eng., 84, 148–155.10.1016/j.jfoodeng.2007.05.005
  25. Pande, G., Akoh, C. C. (2010). Organic acids, antioxidant capacity, phenolic content and lipid characterisation of Georgia-grown underutilized fruit crops. Food Chem., 120, 1067–1075.10.1016/j.foodchem.2009.11.054
  26. Patras, A., Brunton, N. P., O’Donnell, C., Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Sci. Technol., 21, 3–11.10.1016/j.tifs.2009.07.004
  27. Priecina, L., Karklina, D. (2014). Research of phenolics, flavonoids and carotenoids in vegetables and spices. In: Proceedings of the International Academic Conference on Engineering, Internet and Technology in Prague 2014, December 12–13, 2014. Prague, pp. 205–214.
  28. Priecina, L., Karklina, D. (2015). Composition of major organic acids in vegetables and spices. In: CBU International Conference Proceedings 2015. Innovations in Science and Education, Prague, Czech Republic, 25–27 March 2015. Vol. 3, pp. 447–454.10.12955/cbup.v3.637
  29. Ravichandran, K., Ahmed, A. R., Knorr, D., Smetanska, I. (2012). The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Res. Int., 48, 16–20.10.1016/j.foodres.2012.01.011
  30. Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., Brunton, N. (2011). Effect of thermal and non-thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int., 44, 1875–1887.10.1016/j.foodres.2011.02.053
  31. Schaich, K. M., Tian, X., Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods, 14, 111–125.10.1016/j.jff.2015.01.043
  32. Scherer, R., Poloni Rybka, A. C., Ballus, C. A., Meinhart, A. D., Teixeira Filho, J., Teixeira Godoy, H. (2012). Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem., 135, 150–154.10.1016/j.foodchem.2012.03.111
  33. Schweiggert, U., Carle, R., Schieber, A. (2007). Conventional and alternative procsses for spice production: a review. Trends Food Sci. Technol., 18, 260–268.10.1016/j.tifs.2007.01.005
  34. Shahidi, F., Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: a review. J. Funct. Foods, 18, 820–897.10.1016/j.jff.2015.06.018
  35. Sharma, K. D., Karki, S., Thakur, N. S., Attri, S. (2012). Chemical composition, functional properties and processing of carrot: a review. J. Food Sci. Technol., 49 (1), 22–32.10.1007/s13197-011-0310-7355087723572822
  36. Sulaiman, S. F., Bakar Sajak, A. A., Ooi, K. L., Supriatno, Seow, E. W. (2011). Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal., 24, 506–515.10.1016/j.jfca.2011.01.020
  37. Šumec, D., Maretic, M., Lugaric, I., Mešic, A., Salopek-Sondi, B., Duralija, B. (2016). Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem., 194, 828–834.10.1016/j.foodchem.2015.08.09526471624
  38. Ti, H., Li, Q., Zhang, R., Zhang, M., Deng, Y., Wei, Z., Chi, J. (2014). Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chem., 159, 166–174.10.1016/j.foodchem.2014.03.02924767040
  39. Tiwari, U., Cummins, E. (2013). Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int., 50, 497–506.10.1016/j.foodres.2011.09.007
  40. Turkmen, N., Sari, F., Velioglu, Y.S. (2008). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem., 93, 713–718.10.1016/j.foodchem.2004.12.038
  41. Van Buggenhout, S., Alminger, M., Lemmens, L., Colle, I., Knockaert, G., Moelants, K., Van Loey, A., Hendrickx, M. (2010). In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends Food Sci. Technol., 21, 607–618.10.1016/j.tifs.2010.09.010
  42. Wang, C., Zuo, Y. (2011). Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chem., 128, 562–568.10.1016/j.foodchem.2011.03.06625212170
  43. Yen, Y. H., Shih, C. H., Chang, C. H. (2008). Effect of adding ascorbic acid and glucose on the antioxidative properties during storage of dried carrots. Food Chem., 107, 265–272.10.1016/j.foodchem.2007.08.013
  44. Zam, W., Bashour, G., Abdewahed, W., Khayata, W. (2012). Separation and purification of proanthocyanidins extracted from pomegranate’s peels (Punica granatum). Int. J. Pharm. Sci. Nanotechnol., 3 (5), 1808–1813.10.37285/ijpsn.2012.5.3.8
  45. Zaupa, M., Calani, L., Del Rio, D., Brighenti, F., Pellegrini, N. (2015). Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem., 187, 338–347.10.1016/j.foodchem.2015.04.05525977035
  46. Zhao, M., Luo, Y., Li, Y., Liu, X., Wu, J., Liao, X., Chen, F. (2013). The identification of degradation products and degradation pathway of malvidin-3-glucoside and malvidin-3,5-diglucoside under microwave treatment. Food Chem., 141, 3260–3267.10.1016/j.foodchem.2013.05.14723871085
  47. Zhu, K. H., Dai, X., Guo, X., Peng, W., Zhou, H. M. (2014). Retarding effect of organic acids, hydrocolloids and microwave treatment on the discoloration of green tea flesh noodles. LWT-Food Sci. Technol., 55, 176–182.10.1016/j.lwt.2013.08.010
DOI: https://doi.org/10.2478/prolas-2018-0017 | Journal eISSN: 2255-890X | Journal ISSN: 1407-009X
Language: English
Page range: 103 - 112
Submitted on: Oct 12, 2016
Accepted on: Jan 2, 2018
Published on: May 8, 2018
Published by: Latvian Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 Līga Prieciņa, Daina Kārkliņa, published by Latvian Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.