Have a personal or library account? Click to login
Predicting and Optimising Ship Fuel Consumption Using Data-Driven Models and a Proposed IGWO Algorithm for Speed Adjustment Cover

Predicting and Optimising Ship Fuel Consumption Using Data-Driven Models and a Proposed IGWO Algorithm for Speed Adjustment

Open Access
|Nov 2025

References

  1. UNCTAD. Review of Maritime Transport 2024. Retrieved from https://unctad.org/system/files/official-document/rmt2024_en.pdf
  2. Johnson H, Styhre L. Increased energy efficiency in short sea shipping through decreased time in port. Transp Res Part A: Policy Pract 2015. Vol. 71, p. 167-178. https://doi.org/10.1016/j.tra.2014.11.008
  3. Nguyen HP, Hoang AT, Nizetic S, Nguyen XP, Le AT, Luong CN, et al. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int Trans Electr Energy Syst 2021. Vol. 31(11), p. e12580. https://doi.org/10.1002/2050-7038.12580
  4. IMO. Frequently asked questions on the Energy Efficiency Existing Ship Index (EEXI) and the annual operational carbon intensity indicator (CII) and CII rating. Retrieved from https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx
  5. Hoang AT. A review on fuels used for marine diesel engines. J Mech Eng Res Dev 2018. Vol. 41(4), p. 22-23. https://doi.org/10.26480/jmerd.04.2018.22.32
  6. Eide MS, Longva T, Hoffmann P, Endresen Ø, Dalsøren SB. Future cost scenarios for reduction of ship CO2 emissions. Marit Policy Manag 2011. Vol. 38(1), p. 11-37. https://doi.org/10.1080/03088839.2010.533711
  7. Papanikolaou A. Holistic ship design optimization. Comput Aided Des 2010. Vol. 42(11), p. 1028-1044. https://doi.org/10.1016/j.cad.2009.07.002
  8. Zhang K, Liu C, He Z, Chen H, Xiang Q, Chu X. Optimization of Sailing Speed for Inland Electric Ships Based on an Improved Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm. J Mar Sci Eng 2024. Vol. 12(8), p. 1417. https://doi.org/10.3390/jmse12081417
  9. Yu Y, Zhang H, Mu Z, Li Y, Sun Y, Liu J. Trim and Engine Power Joint Optimization of a Ship Based on Minimum Energy Consumption over a Whole Voyage. J Mar Sci Eng 2024. Vol. 12(3), p. 475. https://doi.org/10.3390/jmse12030475
  10. Wu Z, Wang S, Yuan Q, Lou N, Qiu S, Bo L, Chen X. Application of a deep learning-based discrete weather data continuousization model in ship route optimization. Ocean Eng 2023. Vol. 285, p. 115435. https://doi.org/10.1016/j.oceaneng.2023.115435
  11. Branch A, Stopford M. Maritime economics. Routledge; 2013.
  12. Ronen D. The effect of oil price on the optimal speed of ships. J Oper Res Soc 1982. Vol. 33(11), p. 1035-1040. https://doi.org/10.1057/jors.1982.215
  13. Liang M, Li H, Liu RW, Lam JSL, Yang Z. PiracyAnalyzer: Spatial temporal patterns analysis of global piracy incidents. Reliab Eng Syst Saf 2024. Vol. 243, p. 109877. https://doi.org/10.1016/j.ress.2023.109877
  14. Yan R, Wang S, Psaraftis HN. Data analytics for fuel consumption management in maritime transportation: Status and perspectives. Transp Res Part E: Logist Transp Rev 2021. Vol. 155, p. 102489. https://doi.org/10.1016/j.tre.2021.102489
  15. UNCTAD. Review of Maritime Transport 2023. Retrieved from https://unctad.org/publication/review-maritime-transport-2023
  16. Rudzki K, Gomulka P, Hoang AT. Optimization model to manage ship fuel consumption and navigation time. Pol Marit Res 2022. Vol. 29(3), p. 141-153. https://doi.org/10.2478/pomr-2022-0034
  17. Nguyen HP. Core orientations for 4.0 technology application on the development strategy of intelligent transportation system in Vietnam. Int J Adv Sci Eng Inf Technol 2020. Vol. 10(2), p. 520-528. https://doi.org/10.18517/ijaseit.10.2.11129
  18. Panda J. Machine learning for naval architecture, ocean and marine engineering. J Mar Sci Technol 2023. Vol. 28, p. 1-26. https://doi.org/10.48550/arXiv.2109.05574
  19. Wang K, Wang J, Huang L, Yuan Y, Wu G, Xing H, et al. A comprehensive review on the prediction of ship energy consumption and pollution gas emissions. Ocean Eng 2022. Vol. 266(2), p. 112826. https://doi.org/10.1016/j.oceaneng.2022.112826
  20. Wang K, Hua Y, Huang L, Guo X, Liu X, Ma Z, et al. A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data. Energy 2023. Vol. 282, p. 128910. https://doi.org/10.1016/j.energy.2023.128910
  21. Wang S, Wang X, Han Y, Wang X, Jiang H, Zhang Z. Ship Fuel and Carbon Emission Estimation Utilizing Artificial Neural Network and Data Fusion Techniques. J Softw Eng Appl 2023. Vol. 16(3), p. 51-72. https://doi.org/10.4236/jsea.2023.163004
  22. Hajli K, Rönnqvist M, Dadouchi C, Audy J-F, Cordeau J-F, Warya G, Ngo T. A fuel consumption prediction model for ships based on historical voyages and meteorological data. J Mar Eng Technol 2024. Vol., p. 439-450. https://doi.org/10.1080/20464177.2024.2371192
  23. Ma Y, Zhao Y, Yu J, Zhou J, Kuang H. An interpretable gray box model for ship fuel consumption prediction based on the SHAP framework. J Mar Sci Eng 2023. Vol. 11(5), p. 1059. https://doi.org/10.3390/jmse11051059
  24. Ma M, Sun Z, Han P, Yang H. A stacking ensemble learning for ship fuel consumption prediction under cross-training. J Mech Sci Technol 2024. Vol. 38, p. 299–308. https://doi.org/10.1007/s12206-023-1224-9
  25. Zhou Y, Pazouki K, Murphy AJ, Uriondo Z, Granado I, Quincoces I, Fernandes-Salvador JA. Predicting ship fuel consumption using a combination of metocean and on-board data. Ocean Eng 2023. Vol. 285, p. 115509. https://doi.org/10.1016/j.oceaneng.2023.115509
  26. Zhang M, Tsoulakos N, Kujala P, Hirdaris S. A deep learning method for the prediction of ship fuel consumption in real operational conditions. Eng Appl Artif Intell 2024. Vol. 130, p. 107425. https://doi.org/10.1016/j.engappai.2023.107425
  27. Han P, Liu Z, Sun Z, Yan C. A novel prediction model for ship fuel consumption considering shipping data privacy: An XGBoost-IGWO-LSTM-based personalized federated learning approach. Ocean Eng 2024. Vol. 302, p. 117668. https://doi.org/10.1016/j.oceaneng.2024.117668
  28. Wang K, Liu X, Guo X, Wang J, Wang Z, Huang L. A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach. Energy 2024. Vol. 310, p. 133265. https://doi.org/10.1016/j.energy.2024.133265
  29. Ghaemi H, Zeraatgar H, Barjasteh M. Investigating Fuel Injection Strategies to Enhance Ship Energy Efficiency in Wave Conditions. Pol Marit Res 2024. Vol. 31, p. 85-93. https://doi.org/10.2478/pomr-2024-0009
  30. Wang Z, Lu T, Han Y, Zhang C, Zeng X, Li W. Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism. Appl Sci 2024. Vol. 14(18), p. 8526. https://doi.org/10.3390/app14188526
  31. Liu Y, Wang K, Lu Y, Zhang Y, Li Z, Ma R, Huang L. A Ship Energy Consumption Prediction Method Based on TGMA Model and Feature Selection. J Mar Sci Eng 2024. Vol. 12(7), p. 1098. https://doi.org/10.3390/jmse12071098
  32. Wang H, Lang X, Mao W. Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction. Transp Res Part D: Transp Environ 2021. Vol. 90, p. 102670. https://doi.org/10.1016/j.trd.2020.102670
  33. Yan X, Wang K, Yuan Y, Jiang X, Negenborn RR. Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors. Ocean Eng 2018. Vol. 169, p. 457-468. https://doi.org/10.1016/j.oceaneng.2018.08.050
  34. Fan A, Yang J, Yang L, Liu W, Vladimir N. Joint optimisation for improving ship energy efficiency considering speed and trim control. Transp Res Part D: Transp Environ 2022. Vol. 113, p. 103527. https://doi.org/10.1016/j.trd.2022.103527
  35. Xie X, Sun B, Li X, Zhao Y, Chen Y. Joint optimization of ship speed and trim based on machine learning method under consideration of load. Ocean Eng 2023. Vol. 287, p. 115917. https://doi.org/10.1016/j.oceaneng.2023.115917
  36. Li X, Sun B, Guo C, Du W, Li Y. Speed optimization of a container ship on a given route considering voluntary speed loss and emissions. Appl Ocean Res 2020. Vol. 94, p. 101995. https://doi.org/10.1016/j.apor.2019.101995
  37. Shih Y-C, Tzeng Y-A, Cheng C-W, Huang C-H. Speed Optimization in Bulk Carriers: A Weather-Sensitive Approach for Reducing Fuel Consumption. J Mar Sci Eng 2023. Vol. 11(10), p. 2000. https://doi.org/10.3390/jmse11102000
  38. Wang K, Li J, Huang L, Ma R, Jiang X, Yuan Y, et al. A novel method for joint optimization of the sailing route and speed considering multiple environmental factors for more energy efficient shipping. Ocean Eng 2020. Vol. 216, p. 107591. https://doi.org/10.1016/j.oceaneng.2020.107591
  39. Li X, Sun B, Jin J, Ding J. Speed optimization of container ship considering route segmentation and weather data loading: Turning point-time segmentation method. J Mar Sci Eng 2022. Vol. 10(12), p. 1835. https://doi.org/10.3390/jmse10121835
  40. Wang K, Zhang D, Shen Z, Zhu W, Ye H, Li D. Novel ship fuel consumption modelling approaches for speed and trim optimisation: Using engine data as auxiliary. Ocean Eng 2023. Vol. 286(1), p. 115520. https://doi.org/10.1016/j.oceaneng.2023.115520
  41. Li Z, Wang K, Hua Y, Liu X, Ma R, Wang Z, Huang L. GA-LSTM and NSGA-III based collaborative optimization of ship energy efficiency for low-carbon shipping. Ocean Eng 2024. Vol. 312, p. 119190. https://doi.org/10.1016/j.oceaneng.2024.119190
  42. Gao J, Chi M, Hu Z. Energy consumption optimization of inland sea ships based on operation data and ensemble learning. Math Probl Eng 2022. Vol. 2022(1), p. 9231782. https://doi.org/10.1155/2022/9231782
  43. Zhao Y, Peng Z, Zhou J, Notteboom T, Ma Y. Toward green container liner shipping: joint optimization of heterogeneous fleet deployment, speed optimization, and fuel bunkering. Int Trans Oper Res 2024. Vol. 32(6), p. 3347-3384. https://doi.org/10.1111/itor.13552
  44. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H. Feature selection: A data perspective. ACM Comput Surv 2017. Vol. 50(6), p. 1-45. https://doi.org/10.1145/3136625
  45. Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer; 2015.
  46. Gujarati D, Porter D. Multicollinearity: What happens if the regressors are correlated. Basic econometrics. McGraw-Hill; 2003. p. 341-387.
  47. Bolón-Canedo V, Alonso-Betanzos A, Morán-Fernández L, Cancela B. Feature selection: From the past to the future. Advances in Selected Artificial Intelligence Areas. Springer, Cham; 2022. p. 11-34. https://doi.org/10.1007/978-3-030-93052-3_2
  48. Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity:The Lasso and Generalizations. New York. Chapman and Hall/CRC; 2015. https://doi.org/10.1201/b18401
  49. Zhao F, Yang W, Tan WW, Yu W, Yang J, Chou SK. Power management of vessel propulsion system for thrust efficiency and emissions mitigation. Appl Energy 2016. Vol. 161, p. 124-132. https://doi.org/10.1016/j.apenergy.2015.10.022
  50. Du Y, Meng Q, Wang S, Kuang H. Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data. Transp Res Part B: Methodol 2019. Vol. 122, p. 88-114. https://doi.org/10.1016/j.trb.2019.02.004
  51. Yan R, Wang S, Du Y. Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship. Transp Res Part E: Logist Transp Rev 2020. Vol. 138, p. 101930. https://doi.org/10.1016/j.tre.2020.101930
  52. Wang K, Yan X, Yuan Y, Jiang X, Lodewijks G, Negenborn RR. Study on route division for ship energy efficiency optimization based on big environment data. Proc. - 4th Int Conf Transp Inf Saf, 2017. https://doi.org/10.1109/ICTIS.2017.8047752
  53. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014. Vol. 69, p. 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  54. Dagal I, Ibrahim A-W, Harrison A, Mbasso WF, Hourani AO, Zaitsev I. Hierarchical multi step Gray Wolf optimization algorithm for energy systems optimization. Sci Rep 2025. Vol. 15(1), p. 8973. https://doi.org/10.1038/s41598-025-92983-w
  55. Li Y, Lin X, Liu J. An improved gray wolf optimization algorithm to solve engineering problems. Sustainability 2021. Vol. 13(6), p. 3208. https://doi.org/10.3390/su13063208
  56. Kohli M, Arora S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 2018. Vol. 5(4), p. 458-72. https://doi.org/10.1016/j.jcde.2017.02.005
  57. Kumar M, Hote YV. Real-time performance analysis of PIDD2 controller for nonlinear twin rotor TITO aerodynamical system. J Intell Robot Syst 2021. Vol. 101, p. 55. https://doi.org/10.1007/s10846-021-01322-4
  58. Qiu Y, Yang X, Chen S. An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems. Sci Rep 2024. Vol. 14(1), p. 14190. https://doi.org/10.1038/s41598-024-64526-2
  59. Long W, Jiao J, Liang X, Cai S, Xu M. A random opposition-based learning grey wolf optimizer. IEEE access 2019. Vol. 7, p. 113810-25. https://doi.org/10.1109/ACCESS.2019.2934994
  60. Naimi AI, Balzer LB. Stacked generalization: an introduction to super learning. Eur J Epidemiol 2018. Vol. 33, p. 459-64. https://doi.org/10.1101/172395
DOI: https://doi.org/10.2478/pomr-2025-0049 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 40 - 58
Published on: Nov 18, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Negar Azemati, Hamid Zeraatgar, Sara Zeraatgar, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.