References
- Guo C, Zhong X, Zhao D. Research on scale effect of resistance components for full-formed ship based on large-scale model towing test. Journal Of Marine Science And Engineering 2023, vol. 11, no. 7, p. 16. doi:10.3390/jmse11071300
- Hatano S, Mori K, Hotta T. Experimental and theoretical investigation of ship boundary layer and wake. In: Proceedings of the 12th Symposium on Naval Hydrodynamics. Washington DC, 1978. doi:10.17226/18592
- Peng H, Ni S, Qiu W. Wave pattern and resistance prediction for ships of full form. Ocean Engineering 2024, vol. 87, pp. 162-173. doi:10.1016/j.oceaneng.2014.06.004
- Gong J, Li Y. The prediction of hull gesture and flow around ship based on Taylor expansion boundary element method. Polish Maritime Research 2019, vol. 26, no. 2, pp. 198-211. doi:10.2478/pomr-2019-0039
- Tu TN, Luu DD, Nguyen THH, Nguyen TTQ, Nguyen MV. Numerical prediction of propeller-hull interaction characteristics using RANS Method. Polish Maritime Research 2019, vol. 26, no. 2, pp. 198-211. doi:10.2478/pomr-2019-0036
- Acanfora M, Altosole M, Pennino S. A numerical model of ship manoeuvring for the KVLCC2 hull, in regular and long-crested irregular waves. Ocean Engineering 2025, vol. 333, p. 121579. doi:10.1016/j.oceaneng.2025.121579
- Degiuli N, Marti I, Bua MP, Grlj CG. Benchmark study on resistance and propulsion characteristics of a 6750-TEU container ship. Ocean Engineering 2025, vol. 319, p. 120300. doi:10.1016/j.oceaneng.2025.120300
- Themelis N, Nikolaidis G, Zagkas V. Assessment of hull and propeller degradation due to biofouling using tree-based models. Applied Sciences 2024, vol. 14, no. 20, p. 9363. doi:10.3390/app14209363
- Tang SX, Duan WY, Chen JK. Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method. Engineering Analysis with Boundary Elements 2024, 169, Part A. doi:10.1016/j.enganabound.2024.105979
- Jin Y, Duffy J, Cai SH, Magee AR. DTMB 5415M dynamic manoeuvres with URANS computation using body-force and discretised propeller models. Ocean Engineering 2019, vol. 182, pp. 305-317. doi:10.1016/j.oceaneng.2019.04.036
- Li S, Liu C, Chu X, Zheng M, Wang Z, Kan J. Ship maneuverability modeling and numerical prediction using CFD with body force propeller. Ocean Engineering 2022, vol. 182, no. 264, p. 112454. doi:10.1016/j.oceaneng.2022.112454
- Liu Z. Analysis of the accuracy of a body-force propeller model and a discretized propeller model in RANS simulations of the flow around a maneuvering ship. Journal of Marine Science and Engineering 2025, 13. doi: 10.3390/jmse13040788
- Knight BG, Maki KJ. A semi-empirical multi-degree of freedom body force propeller model. Ocean Engineering 2019, vol. 178, pp. 270-282. doi:10.1016/j. oceaneng.2019.02.056
- Chuan TQ, Phuong NK, Tu TN, Quan MV, Anh ND, Le TH. Numerical study of effect of trim on performance of 12500DWT cargo ship using Ranse method. Polish Maritime Research 2022, vol. 29, pp. 3-12. doi:10.2478/pomr-2022-0001
- Zhang Y, Windén B, Ojeda HRD, Hudson D, Turnock S. Influence of drift angle on the propulsive efficiency of a fully appended container ship (KCS) using computational fluid dynamics. Ocean Engineering 2024, vol. 292, p. 116537. doi:10.1016/j.oceaneng.2023.116537
- Islam H, Soares CG. Estimation of hydrodynamic derivatives of an appended KCS model in open and restricted waters. Ocean Engineering 2022, vol. 266, p. 112947. doi:10.1016/j.oceaneng.2022.112947
- Song S, Kim D, Dai S. CFD investigation into the effect of GM variations on ship manoeuvring characteristics. Ocean Engineering 2024, vol. 291, p. 116472. doi:10.1016/j. oceaneng.2023.116472
- Guo C, Wang X, Wang C, Zhao Q, Zhang HP. Research on calculation methods of ship model self-propulsion prediction. Ocean Engineering 2020, vol. 203, p. 107232. doi:10.1016/j.oceaneng.2020.107232
- Feng D, Yu J, He R, Zhang Z, Wang X. Improved body force propulsion model for ship propeller simulation. Applied Ocean Research 2020, vol. 104, p. 102328. doi:10.1016/j. apor.2020.102328
- Cai B, Mao X, Xu Q, Cai W, Tian B, Qiu L. Simulation of the interaction between ship and ducted propeller with a modified body force method. Ocean Engineering 2022, vol. 249, p. 110950. doi:10.1016/j.oceaneng.2022.110950
- Yu J, Yao C, Liu L, Zhang Z, Feng D. Assessment of full formed KCS free running simulation with body-force models. Ocean Engineering 2021, vol. 237, p. 109570. doi:10.1016/j.oceaneng.2021.109570
- Aram S, Mucha P. CFD validation and analysis of turning maneuvers of a surface combatant in regular waves. Ocean Engineering 2024, vol. 293, p. 116653. doi:10.1016/j. oceaneng.2023.116653
- Xie C, Zhou L, Ding S, Lu M, Zhou X. Research on self-propulsion simulation of a polar ship in a brash ice channel based on body force model. International Journal of Naval Architecture and Ocean Engineering 2023, vol. 15, p. 100557. doi:10.1016/j.ijnaoe.2023.100557
- Cai B, Qiu L, Tian B, Xu Q, Mao X, Chai W, Zhan X. Research on predicting methods of propeller-hull interactions in head waves. Ocean Engineering 2023, vol. 269, p.113493. doi:10.1016/j.oceaneng.2022.113493
- STAR-CCM+ Theory Guide. CD ADAPCO, 2021. Retrieved from: https://www.sw.siemens.com/
- Reissner H. On the vortex theory of the screw propeller. Journal Of the Aeronaut Sciences 1937, vol. 5, no. 1, pp. 1-7. doi:10.1098/rspa.1929.0078
- Hough GR, Ordway D. The generalized actuator disk. Therm. Advanced Research Inc., Ithaca, NY; 1964. doi: 10.21236/ad0433976
- Stern F, Wilson R, Shao J. Quantitative V&V of CFD simulations and certification of CFD codes. International Journal for Numerical Methods in Fluids 2006, vol. 50, no. 11, p. 1335e1355. doi:10.1002/fld.1090