Have a personal or library account? Click to login
Investigation on the influence of inflow plane parameters on the prediction of full formed ship’s self-propulsion performance Cover

Investigation on the influence of inflow plane parameters on the prediction of full formed ship’s self-propulsion performance

Open Access
|Nov 2025

References

  1. Guo C, Zhong X, Zhao D. Research on scale effect of resistance components for full-formed ship based on large-scale model towing test. Journal Of Marine Science And Engineering 2023, vol. 11, no. 7, p. 16. doi:10.3390/jmse11071300
  2. Hatano S, Mori K, Hotta T. Experimental and theoretical investigation of ship boundary layer and wake. In: Proceedings of the 12th Symposium on Naval Hydrodynamics. Washington DC, 1978. doi:10.17226/18592
  3. Peng H, Ni S, Qiu W. Wave pattern and resistance prediction for ships of full form. Ocean Engineering 2024, vol. 87, pp. 162-173. doi:10.1016/j.oceaneng.2014.06.004
  4. Gong J, Li Y. The prediction of hull gesture and flow around ship based on Taylor expansion boundary element method. Polish Maritime Research 2019, vol. 26, no. 2, pp. 198-211. doi:10.2478/pomr-2019-0039
  5. Tu TN, Luu DD, Nguyen THH, Nguyen TTQ, Nguyen MV. Numerical prediction of propeller-hull interaction characteristics using RANS Method. Polish Maritime Research 2019, vol. 26, no. 2, pp. 198-211. doi:10.2478/pomr-2019-0036
  6. Acanfora M, Altosole M, Pennino S. A numerical model of ship manoeuvring for the KVLCC2 hull, in regular and long-crested irregular waves. Ocean Engineering 2025, vol. 333, p. 121579. doi:10.1016/j.oceaneng.2025.121579
  7. Degiuli N, Marti I, Bua MP, Grlj CG. Benchmark study on resistance and propulsion characteristics of a 6750-TEU container ship. Ocean Engineering 2025, vol. 319, p. 120300. doi:10.1016/j.oceaneng.2025.120300
  8. Themelis N, Nikolaidis G, Zagkas V. Assessment of hull and propeller degradation due to biofouling using tree-based models. Applied Sciences 2024, vol. 14, no. 20, p. 9363. doi:10.3390/app14209363
  9. Tang SX, Duan WY, Chen JK. Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method. Engineering Analysis with Boundary Elements 2024, 169, Part A. doi:10.1016/j.enganabound.2024.105979
  10. Jin Y, Duffy J, Cai SH, Magee AR. DTMB 5415M dynamic manoeuvres with URANS computation using body-force and discretised propeller models. Ocean Engineering 2019, vol. 182, pp. 305-317. doi:10.1016/j.oceaneng.2019.04.036
  11. Li S, Liu C, Chu X, Zheng M, Wang Z, Kan J. Ship maneuverability modeling and numerical prediction using CFD with body force propeller. Ocean Engineering 2022, vol. 182, no. 264, p. 112454. doi:10.1016/j.oceaneng.2022.112454
  12. Liu Z. Analysis of the accuracy of a body-force propeller model and a discretized propeller model in RANS simulations of the flow around a maneuvering ship. Journal of Marine Science and Engineering 2025, 13. doi: 10.3390/jmse13040788
  13. Knight BG, Maki KJ. A semi-empirical multi-degree of freedom body force propeller model. Ocean Engineering 2019, vol. 178, pp. 270-282. doi:10.1016/j. oceaneng.2019.02.056
  14. Chuan TQ, Phuong NK, Tu TN, Quan MV, Anh ND, Le TH. Numerical study of effect of trim on performance of 12500DWT cargo ship using Ranse method. Polish Maritime Research 2022, vol. 29, pp. 3-12. doi:10.2478/pomr-2022-0001
  15. Zhang Y, Windén B, Ojeda HRD, Hudson D, Turnock S. Influence of drift angle on the propulsive efficiency of a fully appended container ship (KCS) using computational fluid dynamics. Ocean Engineering 2024, vol. 292, p. 116537. doi:10.1016/j.oceaneng.2023.116537
  16. Islam H, Soares CG. Estimation of hydrodynamic derivatives of an appended KCS model in open and restricted waters. Ocean Engineering 2022, vol. 266, p. 112947. doi:10.1016/j.oceaneng.2022.112947
  17. Song S, Kim D, Dai S. CFD investigation into the effect of GM variations on ship manoeuvring characteristics. Ocean Engineering 2024, vol. 291, p. 116472. doi:10.1016/j. oceaneng.2023.116472
  18. Guo C, Wang X, Wang C, Zhao Q, Zhang HP. Research on calculation methods of ship model self-propulsion prediction. Ocean Engineering 2020, vol. 203, p. 107232. doi:10.1016/j.oceaneng.2020.107232
  19. Feng D, Yu J, He R, Zhang Z, Wang X. Improved body force propulsion model for ship propeller simulation. Applied Ocean Research 2020, vol. 104, p. 102328. doi:10.1016/j. apor.2020.102328
  20. Cai B, Mao X, Xu Q, Cai W, Tian B, Qiu L. Simulation of the interaction between ship and ducted propeller with a modified body force method. Ocean Engineering 2022, vol. 249, p. 110950. doi:10.1016/j.oceaneng.2022.110950
  21. Yu J, Yao C, Liu L, Zhang Z, Feng D. Assessment of full formed KCS free running simulation with body-force models. Ocean Engineering 2021, vol. 237, p. 109570. doi:10.1016/j.oceaneng.2021.109570
  22. Aram S, Mucha P. CFD validation and analysis of turning maneuvers of a surface combatant in regular waves. Ocean Engineering 2024, vol. 293, p. 116653. doi:10.1016/j. oceaneng.2023.116653
  23. Xie C, Zhou L, Ding S, Lu M, Zhou X. Research on self-propulsion simulation of a polar ship in a brash ice channel based on body force model. International Journal of Naval Architecture and Ocean Engineering 2023, vol. 15, p. 100557. doi:10.1016/j.ijnaoe.2023.100557
  24. Cai B, Qiu L, Tian B, Xu Q, Mao X, Chai W, Zhan X. Research on predicting methods of propeller-hull interactions in head waves. Ocean Engineering 2023, vol. 269, p.113493. doi:10.1016/j.oceaneng.2022.113493
  25. STAR-CCM+ Theory Guide. CD ADAPCO, 2021. Retrieved from: https://www.sw.siemens.com/
  26. Reissner H. On the vortex theory of the screw propeller. Journal Of the Aeronaut Sciences 1937, vol. 5, no. 1, pp. 1-7. doi:10.1098/rspa.1929.0078
  27. Hough GR, Ordway D. The generalized actuator disk. Therm. Advanced Research Inc., Ithaca, NY; 1964. doi: 10.21236/ad0433976
  28. Stern F, Wilson R, Shao J. Quantitative V&V of CFD simulations and certification of CFD codes. International Journal for Numerical Methods in Fluids 2006, vol. 50, no. 11, p. 1335e1355. doi:10.1002/fld.1090
DOI: https://doi.org/10.2478/pomr-2025-0046 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 4 - 19
Published on: Nov 18, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Feichi Gu, Min Wang, Long Zheng, Hao Wang, Shunhuai Chen, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.