Have a personal or library account? Click to login
Research on Preventive Maintenance Strategies and Systems for in-Service Ship Equipment Cover

Research on Preventive Maintenance Strategies and Systems for in-Service Ship Equipment

Open Access
|Apr 2022

References

  1. 1. E. Skjong, R. Volden, E. Rodskar, et al., “Past, Present, and Future Challenges of the Marine Vessel’s Electrical Power System”, IEEE Trans. Transp. Electrif., vol. 2, pp. 522–537, 2016.10.1109/TTE.2016.2552720
  2. 2. R. Ahmad, S. Kamaruddin, “An overview of time-based and condition-based maintenance in industrial application”, Computers & Industrial Engineering, vol. 63, no. 1, pp. 135-149, 2012.10.1016/j.cie.2012.02.002
  3. 3. X. Li, Y.X. Jia, Y.S. Bai, “Study on Optimal Maintenance Level Based on Preventive Group Maintenance Police”, Fire Control & Command Control, vol. 38, no. 2, pp. 35-39, 2013.
  4. 4. X.C. Li, J.B. Hu, Z.H. Zhang, “Simulation analysis of warship deployability with maintenance structures involved”, Chinese Journal of Ship Research, vol. 10, no. 5, pp. 123-128, 2015.
  5. 5. V.J. Jimenez, N. Bouhmala, A.H. Gausdal, “Developing a predictive maintenance model for vessel machinery”, Journal of Ocean Engineering and Science, vol. 5, no. 4, pp. 358-386, 2020, doi: 10.1016/j.joes.2020.03.003.10.1016/j.joes.2020.03.003
  6. 6. I. Emovon, R.A. Norman, A.J. Murphy, “Hybrid MCDM based methodology for selecting the optimum maintenance strategy for ship machinery systems”, Journal of Intelligent Manufacturing, vol. 29, no. 3, pp. 519-531, 2018.10.1007/s10845-015-1133-6
  7. 7. P. Bzura, “Diagnostic Model of Crankshaft Seals”, Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0044.10.2478/pomr-2019-0044
  8. 8. J. Girtler, “Limiting Distribution of the Three-State Semi-Markov Model of Technical State Transitions of Ship Power Plant Machines and its Applicability in Operational Decision-Making”, Polish Marit. Res., vol. 27, no. 2, 2020, doi: 10.2478/pomr-2020-0035.10.2478/pomr-2020-0035
  9. 9. R.X. Wei, C. Lin, T.J. Jiang, “Optimization method of condition-based maintenance decision-making for task-oriented ship fleet”, Journal of Naval University of Engineering, vol. 33, no. 4, pp. 83-89, 2021.
  10. 10. P. He, W. Zuo, Y. Wang, “Modeling for Repair Level of Air and Missile Defense Equipment Under Multi-constraints”, Fire Control & Command Control, vol. 45, no. 3, pp. 42-47, 2020.
  11. 11. J. Girtler and J. Rudnicki, “The matter of decision-making control over operation processes of marine power plant systems with the use of their models in the form of semi-Markov decision-making processes”, Polish Marit. Res., vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0011.10.2478/pomr-2021-0011
  12. 12. R. Zagan, I. Paprocka, M.-G. Manea, and E. Manea, “Estimation of Ship Repair Time Using the Genetic Algorithm”, Polish Marit. Res., vol. 28, no. 3, 2021, doi: 10.2478/pomr-2021-0036.10.2478/pomr-2021-0036
  13. 13. M.C. Lin, Z. Tang, M.Q. Ning, and C.Y. Wang, “Condition-Based Maintenance Strategy for Dynamic Performance Detection Based on Wiener Process”, Journal of Ordnance Equipment Engineering, vol. 42, no. 7, pp. 40-45, 2021.
  14. 14. M. Hashemi, M. Asadi, “Optimal preventive maintenance of coherent systems: A generalized Pólya process approach”, IISE Transactions, vol. 53, no. 11, pp. 1266-128, 2021.
  15. 15. D.P. Niu, L. Guo, et al., “Preventive maintenance period decision for elevator parts based on multi-objective optimization method”, Journal of Building Engineering, vol. 44, 2021, doi: 10.1016/J.JOBE.2021.102984.10.1016/j.jobe.2021.102984
  16. 16. A. Sa’ad, A.C. Nyoungue, Z. Hajej, “Improved Preventive Maintenance Scheduling for a Photovoltaic Plant under Environmental Constraints”, Sustainability, vol. 13, no. 18, pp. 10472-10472, 2021.10.3390/su131810472
  17. 17. Z. Luo, X. Zhou, Y.D. Shi, “Research on method of warship maintenance structure designing based on requirement of assignment and maintenance”, Journal of Naval University of Engineering, vol. 15, no. 04, pp. 60-64, 2018.
  18. 18. Y. Geum, Y. Cho, Y. Park, “A systematic approach for diagnosing service failure: Service-specific FMEA and grey relational analysis approach”, Mathematical & Computer Modelling, vol. 54, no. 11-12, pp. 3126-3142, 2011.10.1016/j.mcm.2011.07.042
  19. 19. P. Mahdad, A.B. Mohammad, G. Kamran, “An integrated approach for healthcare services risk assessment and quality enhancement”, International Journal of Quality & Reliability Management, vol. 37, no. 9/10, pp. 1183-1208, 2019.10.1108/IJQRM-11-2018-0314
  20. 20. P.B. Southard, S. Kumar, C.A. Southard, “A modified Delphi methodology to conduct a failure modes effects analysis: a patient-centric effort in a clinical medical laboratory”, Quality Management in Health Care, vol. 20, no. 2, pp. 131-51, 2011.10.1097/QMH.0b013e318213b07921467901
  21. 21. Y. Melih, G. Muhammet, C. Erkan, “A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method”, Complex & Intelligent Systems, vol. 7, pp. 1547-1564, 2011.10.1007/s40747-021-00279-z
  22. 22. S. Boral, S. Chakraborty, “Failure analysis of CNC machines due to human errors: An integrated IT2F-MCDM-based FMEA approach”, Engineering Failure Analysis, vol. 130, 2021, doi: 10.1016/J.ENGFAILANAL.2021.105768.10.1016/j.engfailanal.2021.105768
  23. 23. E. Kulcsár, I.G. Gyurika, T. Csiszér, “Increasing the Reliability of FMEA Evaluation by Modifying Rating Scales and Applying Pairwise Comparison Method”, IOP Conference Series: Materials Science and Engineering, vol. 1190, no. 1, 2021.10.1088/1757-899X/1190/1/012003
  24. 24. V. Behnam, M. Salimi, M. Charkhchian, “A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process”, The International Journal of Advanced Manufacturing Technology, vol. 77, no. 1-4, pp. 357-368, 2015.10.1007/s00170-014-6466-3
  25. 25. B. Marcia, S. Shankar, et al., “Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling”, Computers & Industrial Engineering, vol. 115, pp. 41-53, 2018.10.1016/j.cie.2017.10.033
  26. 26. G. Kai, D. Matthew, et al., Prognostics: The Science of Making Predictions. California, USA, 2017, pp. 123-135.
  27. 27. E.M. Assis, E.P. Borges, “Generalized q-Weibull model and the bathtub curve”, The International Journal of Quality & Reliability Management, vol. 30, no. 7, pp. 720-736, 2013.10.1108/IJQRM-Oct-2011-0143
  28. 28. A.A. Ahmed, A.R. Zahran, M.A. Ismail, “On maximum likelihood estimation of the general projected normal distribution”, Journal of Statistical Computation and Simulation, vol. 91, no. 16, pp. 3453-3472, 2021.10.1080/00949655.2021.1929984
  29. 29. P. Nasiri, A.A. Azarian, “Estimation of the Parameters of Generalized Inverse Weibull Geometric Distribution and its Application”, Fluctuation and Noise Letters, vol. 20, no. 05, 2021.10.1142/S0219477521500437
  30. 30. B.H. Jia, Y.W. Ma, et al., “Continued Operational Safety Assessment of Civil Aircraft Structural Events Based on TARAM”, Advances in Aeronautical Science and Engineering, vol. 12, no. 5, pp. 1-9, 2021, doi: 10.16615/j. cnki.1674-8190.2021.05.04
  31. 31. B. Yang, Y. Chen, M.H. Wang, “Discussion about maintenance mode decision method for warship weapon equipments”, Journal of Gun Launch & Control, vol. 35, no. 01, pp. 83-87, 2014.
  32. 32. A. Ngamnij, A. Somjit, “Semantic Ontology Mapping for Interoperability of Learning Resource Systems using a rule-based reasoning approach”, Expert Systems with Applications, vol. 40, no. 18, pp. 7428-7443, 2013.10.1016/j.eswa.2013.07.027
  33. 33. E. Ramadhani, H.R. Pratama, E.G. Wahyuni, “Web-based expert system to determine digital forensics tool using rule-based reasoning approach”, Journal of Physics: Conference Series, vol. 1918, no. 4, 2021.10.1088/1742-6596/1918/4/042003
  34. 34. K. Ljubica, K. Zoltan, “Using Ontology and Rule-Based Reasoning for Conceptual Data Models Synonyms Detection: A Case Study”, Journal of Database Management (JDM), vol. 30, no. 1, pp.1-21, 2019.10.4018/JDM.2019010101
DOI: https://doi.org/10.2478/pomr-2022-0009 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 85 - 96
Published on: Apr 26, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Tingxin Song, Taiyang Tan, Guochen Han, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution 4.0 License.