Have a personal or library account? Click to login
Framework of an Evolutionary Multi-Objective Optimisation Method for Planning a Safe Trajectory for a Marine Autonomous Surface Ship Cover

Framework of an Evolutionary Multi-Objective Optimisation Method for Planning a Safe Trajectory for a Marine Autonomous Surface Ship

Open Access
|Dec 2019

References

  1. 1. Bechikh, S., M. Kessentini, L. Ben Said, K. Ghédira: Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art, Adv. Comput. 98 (2015) 141–207.10.1016/bs.adcom.2015.03.001
  2. 2. Bertaska, I.R., B. Shah, K. Von Ellenrieder, P. Švec, W. Klinger, A.J. Sinisterra, M. Dhanak, S.K. Gupta: Experimental evaluation of automatically-generated behaviors for USV operations, Ocean Eng. 106 (2015) 496–514.10.1016/j.oceaneng.2015.07.002
  3. 3. Branke, J., T. Kaußler, H. Schmeck: Guidance in evolutionary multi-objective optimization, Adv. Eng. Softw. 32 (2001) 499–507.10.1016/S0965-9978(00)00110-1
  4. 4. Burmeister, H.-C., W. Bruhn, Ø.J. Rødseth, T. Porathe: Autonomous Unmanned Merchant Vessel and its Contribution towards the e-Navigation Implementation: The MUNIN Perspective, Int. J. e-Navigation Marit. Econ. 1 (2014) 1–13.10.1016/j.enavi.2014.12.002
  5. 5. Campbell, S., W. Naeem, G.W. Irwin: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres, Annu. Rev. Control. 36 (2012) 267–283.10.1016/j.arcontrol.2012.09.008
  6. 6. Chroni, Dionysia & Liu, Shukui & Plessas, Timoleon & Papanikolaou, Apostolos. (2015). Simulation of the maneuvering behavior of ships under the influence of environmental forces. (2015) 111–120. DOI: 10.1201/b18855-16.10.1201/b18855-16
  7. 7. Cockcroft, A.N., Lameijer J.N.F.: A guide to the collision avoidance rules: international regulations for preventing collisions at sea, Elsevier, 2012.
  8. 8. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Ltd, Chichester, UK, 2011.10.1002/9781119994138
  9. 9. Hermann, D., R. Galeazzi, J.C. Andersen, M. Blanke: Smart sensor based obstacle detection for high-speed unmanned surface vehicle, IFAC-PapersOnLine. 28 (2015) 190–197.10.1016/j.ifacol.2015.10.279
  10. 10. IMO: Resolution MSC.252(83) Adoption of the Revised Performance Standards for Integrated Navigation Systems (INS), Imo - Msc. 252 (2007) 1–49.
  11. 11. ITTC: Final Report and Recommendations to the 24th ITTC. 24th International Towing Tank Conference, 2005.
  12. 12. Jakob, W., C. Blume: Pareto optimization or cascaded weighted sum: A comparison of concepts, Algorithms. 7 (2014) 166–185.10.3390/a7010166
  13. 13. Jingsong, Z., W. Price: Automatic collision avoidance systems: Towards 21st century, in: Dep. Sh. Sci., 2008: pp. 1–10.
  14. 14. Kazimierski, W., A. Stateczny: Radar and Automatic Identification System Track Fusion in an Electronic Chart Display and Information System, J. Navig. 68 (2015) 1141–1154.10.1017/S0373463315000405
  15. 15. Kazimierski, W., G. Zaniewicz, A. Stateczny: Verification of multiple model neural tracking filter with ship’s radar, in: 2012 13th Int. Radar Symp., IEEE, 2012: pp. 549–553.10.1109/IRS.2012.6233383
  16. 16. Krata, P., J. Szlapczynska: Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction, Ocean Eng. 150 (2018) 124–137.10.1016/j.oceaneng.2017.12.049
  17. 17. Lazarowska, A.: A new deterministic approach in a decision support system for ship’s trajectory planning, Expert Systems with Applications, Volume 71, 2017, Pages 469-478, ISSN 0957-417410.1016/j.eswa.2016.11.005
  18. 18. Lee, H.-Y., S.-S. Shin: The Prediction of ship’s manoeuvring performance In initial design stage, PRADS Pr. Deisgn Ships Mob. Units. (1998) 666–639.10.1016/S0928-2009(98)80205-9
  19. 19. Li, K., K. Deb, X. Yao: R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multi-Objective Optimization Using Reference Points, IEEE Trans. Evol. Comput. 22 (2017) 821–835.10.1109/TEVC.2017.2737781
  20. 20. Li, W., W. Ma: SIMULATION ON VESSEL INTELLIGENT COLLISION AVOIDANCE, Polish Marit. Res. 23 (2016) 138–143.10.1515/pomr-2016-0058
  21. 21. Lisowski, J.: Optimization-Supported Decision-Making in the Marine Game Environment, in: Mechatron. Syst. Mech. Mater. II, Trans Tech Publications, 2014: pp. 215–222.10.4028/www.scientific.net/SSP.210.215
  22. 22. Lisowski, J.: Analysis of Methods of Determining the Safe Ship Trajectory, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 10 (2016) 223–228.10.12716/1001.10.02.05
  23. 23. Man, Y., M. Lundh, T. Porathe, S. MacKinnon: From Desk to Field – Human Factor Issues in Remote Monitoring and Controlling of Autonomous Unmanned Vessels, Procedia Manuf. 3 (2015) 2674–2681.10.1016/j.promfg.2015.07.635
  24. 24. Naeem, W., S.C. Henrique, L. Hu: A Reactive COLREGs-Compliant Navigation Strategy for Autonomous Maritime Navigation, IFAC-PapersOnLine. 49 (2016) 207–213.10.1016/j.ifacol.2016.10.344
  25. 25. Olszewski, H., H. Ghaemi: New concept of numerical ship motion modelling for total ship operability analysis by integrating ship and Environment Under One Overall System, Polish Marit. Res. 25 (2018) 36–41.10.2478/pomr-2018-0020
  26. 26. Papanikolaou, A., N. Fournarakis, D. Chroni, S. Liu: Simulation of the Maneuvering Behavior of Ships in Adverse Weather Conditions, 212 (2016) 11–16.
  27. 27. Perera, L.P., J.P. Carvalho, C.. Guedes Soares: Autonomous guidance and navigation based on the COLREGs rules and regulations of collision avoidance, Adv. Sh. Des. Pollut. Prev. (2010) 205–216.
  28. 28. Perera, L.P., L. Moreira, F.P. Santos, V. Ferrari, S. Sutulo, C. Guedes Soares: A navigation and control platform for real-time manoeuvring of autonomous ship models, IFAC, 2012.10.3182/20120919-3-IT-2046.00079
  29. 29. Perera, L.P., C.G. Soares: Weather routing and safe ship handling in the future of shipping, Ocean Eng. 130 (2017) 684–695.10.1016/j.oceaneng.2016.09.007
  30. 30. Polvara, R., S. Sharma, J. Wan, A. Manning, R. Sutton: Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles, J. Navig. (2017) 1–16.10.1017/S0373463317000753
  31. 31. Praczyk, T.: Neural anti-collision system for Autonomous Surface Vehicle, Neurocomputing. 149 (2015) 559–572.10.1016/j.neucom.2014.08.018
  32. 32. Stateczny, A.: Neural Manoeuvre Detection of the Tracked Target in ARPA Systems, IFAC Proc. Vol. 34 (2001) 209–214.10.1016/S1474-6670(17)35084-X
  33. 33. Szłapczynska, J.: Multi-objective Weather Routing with Customised Criteria and Constraints, J. Navig. 68 (2015) 338–354.10.1017/S0373463314000691
  34. 34. Szlapczynski, R.: A new method of planning collision avoidance manoeuvres for multi-target encounter situations, J. Navig. 61 (2008) 307-321.10.1017/S0373463307004638
  35. 35. Szlapczynski, R.: Evolutionary planning of safe ship tracks in restricted visibility, J. Navig. 68 (2015) 39-51.10.1017/S0373463314000587
  36. 36. Szlapczynski, R., J. Szlapczynska: A Simulative Comparison of Ship Domains and Their Polygonal Approximations, TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 9 (2015) 135–141.10.12716/1001.09.01.17
  37. 37. Szlapczynski, R., J. Szlapczynska: A Target Information Display for Visualising Collision Avoidance Manoeuvres in Various Visibility Conditions, J. Navig. 68 (2015) 1041–1055.10.1017/S0373463315000296
  38. 38. Szlapczynski, R., J. Szlapczynska: A method of determining and visualizing safe motion parameters of a ship navigating in restricted waters, Ocean Eng. 129 (2017) 363–373.10.1016/j.oceaneng.2016.11.044
  39. 39. Tsou, M.C.: Integration of a geographic information system and evolutionary computation for automatic routing in coastal navigation, J. Navig. 63 (2010) 323–341.10.1017/S0373463309990385
  40. 40. Tsou, M.C.: Multi-target collision avoidance route planning under an ECDIS framework, Ocean Eng. 121 (2016) 268–278.10.1016/j.oceaneng.2016.05.040
  41. 41. Utyuzhnikov, S. V., P. Fantini, M.D. Guenov: A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization, J. Comput. Appl. Math. 223 (2009) 820–841.10.1016/j.cam.2008.03.011
  42. 42. Woerner, K., M.R. Benjamin, M. Novitzky, J.J. Leonard: Quantifying protocol evaluation for autonomous collision avoidance: Toward establishing COLREGS compliance metrics, Auton. Robots. (2018) 1–25.10.1007/s10514-018-9765-y
  43. 43. Wrobel, K., P. Krata, J. Montewka, T. Hinz: Towards the Development of a Risk Model for Unmanned Vessels Design and Operations, Int. J. Mar. Navig. Saf. Sea Transp. 10 (2016) 267–274.10.12716/1001.10.02.09
  44. 44. Wróbel, K., J. Montewka, P. Kujala: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety, Reliab. Eng. Syst. Saf. 165 (2017) 155–169.10.1016/j.ress.2017.03.029
  45. 45. Zeraatgar, H., M.H. Ghaemi: The Analysis of Overall Ship Fuel Consumption in Acceleration Manoeuvre Using Hull-Propeller-Engine Interaction Principles and Governor Features, Polish Marit. Res. 26 (2019) 162–173.10.2478/pomr-2019-0018
  46. 46. Zhang, Z., C. Lee: Multiobjective Approaches for the Ship Stowage Planning Problem Considering Ship Stability and Container Rehandles, IEEE Trans. Syst. Man, Cybern. Syst. 46 (2016) 1374–1389.10.1109/TSMC.2015.2504104
  47. 47. Zhao-Lin, W.: Quantification of Action to Avoid Collision, J. Navig. 37 (1984) 420–430.10.1017/S0373463300019949
  48. 48. Zhou, K., J. Chen, X. Liu: Optimal Collision-Avoidance Manoeuvres to Minimise Bunker Consumption under the Two-Ship Crossing Situation, J. Navig. (2019) 151–168.10.1017/S0373463317000534
  49. 49. Zitzler, E., M. Laumanns, L. Thiele: {SPEA2}: Improving the {S}trength {P}areto {E}volutionary {A}lgorithm, EUROGEN 2001. Evol. Methods Des. Optim. Control with Appl. to Ind. Probl. (2002) 95–100.
DOI: https://doi.org/10.2478/pomr-2019-0068 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 69 - 79
Published on: Dec 31, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Rafał Szłapczyński, Hossein Ghaemi, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.