Have a personal or library account? Click to login

Model Predictive Super-Twisting Sliding Mode Control for an Autonomous Surface Vehicle

Open Access
|Oct 2019

References

  1. 1. Esfahani, H. N., Azimirad. V., Eslami. A., Asadi. S.): An optimal sliding mode control based on immune-wavelet algorithm for underwater robotic manipulator. Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 2013.10.1109/IranianCEE.2013.6599587
  2. 2. Esfahani, H. N., Azimirad, V., Danesh, M.: A time delay controller included terminal sliding mode and fuzzy gain tuning for underwater vehicle-manipulator systems. Ocean Engineering, Vol. 107, (2015) pp. 97-107.10.1016/j.oceaneng.2015.07.043
  3. 3. Esfahani, H. N., Azimirad, V., Zakeri, M.: Sliding Mode-PID Fuzzy controller with a new reaching mode for underwater robotic manipulators. Latin American Applied Research, vol. 44(3), (2014), pp. 253–258.10.52292/j.laar.2014.449
  4. 4. Liu C., Zheng H., Negenborn R.R., Chu X., Wang L.: Trajectory tracking control for underactuated surface vessels based on nonlinear Model Predictive Control. In: Corman F., Voß S., Negenborn R. (eds) Computational Logistics. ICCL 2015. Lecture Notes in Computer Science, vol 9335, (2015), pp. 166-180. Springer, Cham. (Proceedings of the 6th International Conference, ICCL 2015, Delft, The Netherlands).10.1007/978-3-319-24264-4_12
  5. 5. Liu, J., Luo, J., Cui, J., Peng, Y.: Trajectory Tracking Control of Underactuated USV with Model Perturbation and External Interference. Procedings of the 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016). Chongqing, China, 2016. DOI: 10.1051/matecconf/20167709009.10.1051/matecconf/20167709009
  6. 6. Wang, W., Mateos, L.A., Park, S., Leoni, P., Gheneti, B., Duarte, F., Ratti, C., Rus, D.: Design, Modeling, and Nonlinear Model Predictive Tracking Control of a Novel Autonomous Surface Vehicle. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 6189–6196. Brisbane, Australia, 2018. DOI: 10.1109/ICRA.2018.8460632.10.1109/ICRA.2018.8460632
  7. 7. Zheng, H., Negenborn, R.R., Lodewijks, G.: Trajectory tracking of autonomous vessels using model predictive control. IFAC Proceedings Volumes. vol. 19, (2014) no. 3, pp. 8812–8818. (Procedings of the 19th IFAC World Congress, Cape Town, South Africa, August 24-29). DOI: 10.3182/20140824-6-ZA-1003.00767.10.3182/20140824-6-ZA-1003.00767
  8. 8. Abdelaal, M., Fr, M., Hahn, A.: Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Eng., Vol. 160, (2018), pp. 168–180.10.1016/j.oceaneng.2018.04.026
  9. 9. Yi, B., Qiao, L., Zhang, W.: Two-time scale path following of underactuated marine surface vessels : Design and stability analysis using singular perturbation methods. Ocean Eng., Vol. 124, (2016), pp. 287–297.10.1016/j.oceaneng.2016.07.006
  10. 10. Valenciaga, F.: A second order sliding mode path following control for autonomous surface vessels. Asian Journal Control, vol. 16(5), (2014), pp. 1515–1521.10.1002/asjc.840
  11. 11. Tanakitkorn, K., Phillips, A.B., Wilson, P.A., Turnock, S.R.: Sliding mode heading control of an overactuated hover-capable autonomous underwater vehicle with experimental verification. Journal of Field Robotics, vol. 35(3), (2017), pp. 396–415.10.1002/rob.21766
  12. 12. Hung, N.T., Rego, F., Crasta, N., Pascoal, A.M. : Input-Constrained Path Following for Autonomous Marine Vehicles with a Global Region of Attraction. IFAC-PapersOnLine, vol. 51(29), pp. 348–353. (Proceedings of the 11th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles, CAMS-2018. Opatija, Croatia, 2018.10.1016/j.ifacol.2018.09.499
  13. 13. Jamalzade, M.S., Koofigar, H.R., Ataei, M.: Adaptive fuzzy control for a class of constrained nonlinear systems with application to a surface vessel. Journal of Theoretical and Applied Mechanics, vol. 54(3), (2016), pp. 987-1000.10.15632/jtam-pl.54.3.987
  14. 14. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, Ltd., 2011.10.1002/9781119994138
  15. 15. Fu, M., Yu, L.: Finite-time extended state observer-based distributed formation control for marine surface vehicles with input saturation and disturbances. Ocean Eng., Vol. 159, (2018), pp. 219–227.10.1016/j.oceaneng.2018.04.016
  16. 16. Incremona, G. P., Ferrara, A., Magni, L.: Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems. IFAC-PapersOnLine, vol. 48(23), (2015), pp. 102-109. (Proceedings of the 5th IFAC Conference on Nonlinear Model Predictive Control, NMPC-15. Seville, Spain).10.1016/j.ifacol.2015.11.268
  17. 17. Esfahani, H. N: Robust Model Predictive Control for Autonomous Underwater Vehicle–Manipulator System with Fuzzy Compensator. Polish Maritime Research (forthcoming), 2019. 10.2478/pomr-2019-00139.10.2478/pomr-2019-0030
  18. 18. Witkowska, A, Smierzchalski, R.: Adaptive dynamic control allocation for dynamic positioning of marine vessel based on backstepping method and sequential quadratic programming. Ocean Engineering, Vol. 163, (2018), pp. 570-582.10.1016/j.oceaneng.2018.05.061
  19. 19. Witkowska, A, Smierzchalski, R.: Adaptive Backstepping Tracking Control for an over–Actuated DP Marine Vessel with Inertia Uncertainties. International Journal of Applied Mathematics and Computer Science, Vol. 28(4), (2018), pp. 679-693.10.2478/amcs-2018-0052
  20. 20. Lisowski, J.: Analysis of Methods of Determining the Safe Ship Trajectory. TRANSNAV-International Journal On Marine Navigation And Safety Of Sea Transportation, Vol. 10(2), (2016), pp. 223-228.10.12716/1001.10.02.05
  21. 21. Lisowski, J.: Optimization-supported decision-making in the marine mechatronics systems. Solid State Phenomena, vol. 210, (2014), pp. 215-222.10.4028/www.scientific.net/SSP.210.215
  22. 22. Tomera, M.: Ant colony optimization algorithm applied to ship steering control. Procedia Computer Science, vol. 35, (2014), pp. 83-92. (Proceedings of the Knowledge-Based and Intelligent Information & Engineering Systems, 18th Annual Conference, KES-2014. Gdynia, Poland).10.1016/j.procs.2014.08.087
  23. 23. Fang, Y.: Global output feedback control of dynamically positioned surface vessels : an adaptive control approach. Mechatronics, Vol. 14, (2004), pp. 341–356. DOI: 10.1016/S0957-4158(03)00064-3.10.1016/S0957-4158(03)00064-3
DOI: https://doi.org/10.2478/pomr-2019-0057 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 163 - 171
Published on: Oct 18, 2019
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Hossein Nejatbakhsh Esfahani, Rafal Szlapczynski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.