Have a personal or library account? Click to login
Adaptive Sliding Mode Control for Ship Autopilot with Speed Keeping Cover

Adaptive Sliding Mode Control for Ship Autopilot with Speed Keeping

By: Zhiquan Liu  
Open Access
|Jan 2019

References

  1. 1. Fossen T.I.: Handbook of marine craft hydrodynamics and motion control. Wiley, West Sussex, 2011.10.1002/9781119994138
  2. 2. Do K.D., Jiang Z.P., Pan J.: Robust adaptive path following of underactuated ships. Automatica, vol. 40, no. 6, 929, 2004.10.1016/j.automatica.2004.01.021
  3. 3. Zhang G., Zhang X., Zheng Y.: Adaptive neural path following control for underactuated ships in fields of marine practice. Ocean Engineering, no. 104, 558, 2015.10.1016/j.oceaneng.2015.05.013
  4. 4. Shojaei K.: Neural adaptive robust control of underactuated marine surface vehicles with input saturation. Applied Ocean Research, no. 53, 267, 2015.10.1016/j.apor.2015.09.010
  5. 5. Li J.H., Lee P.M., Jun B.H., Lim Y.K.: Point to point navigation of underactuated ships. Automatica, vol. 44, no. 12, 3201, 2008.10.1016/j.automatica.2008.08.003
  6. 6. Peng Z., Wang D., Chen Z., Hu X., Lan W.: Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics. IEEE Transactions on Control System Technology, vol.21, no. 2, 513, 2013.10.1109/TCST.2011.2181513
  7. 7. Do K.D., Pan J., Jiang Z.P.: Robust adaptive control of underactuated ships on a linear course with comfort. Ocean Engineering, vol. 30, no. 7, 2201, 2003.10.1016/S0029-8018(03)00080-5
  8. 8. Li H., Liu J., Hilton C., Liu H.: Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Transactions on Industrial Electronics, vol. 60, no. 8, 3328, 2013.10.1109/TIE.2012.2202354
  9. 9. Kahveci N., Ioannou P.A.: Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica, vol. 49, no. 3, 685, 2013.10.1016/j.automatica.2012.11.026
  10. 10. Lin C., Hsuen C., Chen C.: Robust adaptive backstepping control for a class of nonlinear systems using recurrent wavelet neural network [J]. Neurocomputing, no. 142, 372, 2014.10.1016/j.neucom.2014.04.023
  11. 11. Cristi R., Papoulias F.A., Healey A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE Journal of Oceanic Engineering, vol. 15, no. 3, 152, 1990.10.1109/48.107143
  12. 12. Do K.D., Pan J., Jiang Z.P.: Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, no. 6, 1967, 2004.10.1016/j.oceaneng.2004.04.006
  13. 13. Liu Y., Liu S., Wang N.: Fully tuned fuzzy neural network robust adaptive tracking control of unmanned under water vehicle with thruster dynamics. Neurocomputing, no. 196, 1, 2016.10.1016/j.neucom.2016.02.042
  14. 14. Prpic-Orsic J., Faltinsen O.M.: Estimation of ship speed loss and associated CO2 emissions in a sea way. Ocean Engineering, vol. 44, no. 1, 1, 2012.10.1016/j.oceaneng.2012.01.028
  15. 15. Arribas F.P.: Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering, vol. 34, no. 7, 946, 2007.10.1016/j.oceaneng.2006.06.002
  16. 16. Armstrong V.N.: Vessel optimisation for low carbon shipping. Ocean Engineering, no. 73, 195, 2013.10.1016/j.oceaneng.2013.06.018
  17. 17. Liu Z., Jin H.: Extended radiated energy method and its application to a ship roll stabilisation control system. Ocean Engineering, vol. 72, no. 7, 25, 2013.10.1016/j.oceaneng.2013.06.009
  18. 18. Faltinsen O.M.: Hydrodynamics of High Speed Vehicles. Cambridge University Press, Cambridge 2005.10.1017/CBO9780511546068
  19. 19. Akinsal V.: Surface ship fuel saving with an optimized autopilot, master dissertation. Naval Postgraduate School, Monterey, 1985.
  20. 20. Grimble M.J., Katabi M.R.: LQG design of ship steering control systems. Signal Processing for Control, Lecture Notes in Control and Information Sciences, no. 79, 387, 1986.10.1007/BFb0008200
  21. 21. Miloh T., Pachter M.: Ship collision-avoidance and pursuitevasion differential games with speed-loss in a turn. Computers Mathematics with Application, vol. 18, no. 1, 77, 1989.10.1016/0898-1221(89)90126-0
  22. 22. Kim S.S., Kim S.D., Kang D., Lee J., Lee S.J., Jung K.H.: Study on variation in ship’s forward speed under regular waves depending on rudder controller. International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 2, 364, 2015.10.1515/ijnaoe-2015-0025
  23. 23. Liu Z., Jin H., Grimble M.J., Katebi R.: Ship forward speed loss minimization using nonlinear course keeping and roll motion controllers. Ocean Engineering, no. 113, 201, 2016.10.1016/j.oceaneng.2015.11.010
  24. 24. Perez T.: Ship Motion Control: Course Keeping and Roll Reduction Using Rudder and Fins. Springer, London, 2005.
  25. 25. Loukakis T.A., Sclavounos P.: Some extensions of the classical approach to strip theory of ship motion including the calculation of mean added forces and moments. Journal of Ship Research, vol. 22, no. 1, 1, 1978.10.5957/jsr.1978.22.1.1
DOI: https://doi.org/10.2478/pomr-2018-0128 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 21 - 29
Published on: Jan 18, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Zhiquan Liu, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.