Have a personal or library account? Click to login
Testing Contraction and Thermal Expansion Coefficient of Construction and Moulding Polymer Composites Cover

Testing Contraction and Thermal Expansion Coefficient of Construction and Moulding Polymer Composites

Open Access
|Jun 2018

References

  1. 1. Marsh G.: 50 years of reinforced plastic boats. Reinforced Plastics, 50(9), 2006, pp. 16-19. doi: 10.1016/S0034-3617(06)71125-0.10.1016/S0034-3617(06)71125-0
  2. 2. Neser G.: Polymer based composites in marine use: history and future trends. Procedia Engineering, 194, 2017, pp. 19-24. doi: 10.1016/j.proeng.2017.08.111.10.1016/j.proeng.2017.08.111
  3. 3. Mouritz A.P., Gellert E., Burchill P., Challis K.: Review of advanced composite structures for naval ships and submarines. Composite Structures 53(1), 2001, pp. 21-41. doi: 10.1016/s0263-8223(00)00175-6.10.1016/S0263-8223(00)00175-6
  4. 4. Bakis C.E., Bank L.C., Brown V.L., Cosenza E., Davalos J.F., Lesko J.J., Machida A., Rizkalla S.H. Triantafillou T.C.: Fiber-reinforced polymer composites for construction-state-of-the-art review, Journal of Composites for Construction, 6(2), 2002, pp. 73-87. doi: 10.1061/(asce)1090-0268(2002)6:2(73).10.1061/(asce)1090-0268(2002)6:2(73)
  5. 5. Manalo A., Aravinthan T., Fam A., Benmokrane B.: State-of-the-art review on FRP sandwich systems for lightweight civil infrastructure, Journal of Composites for Construction, 21(1), 2016, pp. 1-43. doi: 10.1061/(asce)cc.1943-5614.0000729.10.1061/(asce)cc.1943-5614.0000729
  6. 6. Mazurkiewicz Ł., Małachowski J., Tomaszewski M., Baranowski P., Yukhymets, P.: Performance of steel pipe reinforced with composite sleeve, Composite Structures, 183, 2018, pp. 199-211. doi: 10.1016/j.compstruct.2017.02.032.10.1016/j.compstruct.2017.02.032
  7. 7. Gołaś J., Podhorecki A., Jarząb M.: Vibrations of composite fibre-reinforced beam induced by inertialess moving load, Shell Structures: Theory and Applications. - Vol. 2/ed. W. Pietraszkiewicz, I. Kreja, London: CRC Press/Balkema, 2010, pp. 167-170. doi: 10.1201/9780203859766.ch35.10.1201/9780203859766.ch35
  8. 8. Reuterlöv S.: Cost effective infusion of sandwich composites for marine applications, Reinforced Plastics, 46(12), 2002, pp. 30-32. doi: 10.1016/s0034-3617(02)80224-7.10.1016/S0034-3617(02)80224-7
  9. 9. Summerscales J., Searle T.J.: Low-pressure (vacuum infusion) techniques for moulding large composite structures, Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, 219(1), 2005, pp. 45-58. doi: 10.1243/146442005x10238.10.1243/146442005x10238
  10. 10. Choi H.K., Nam K.W., Ahn S.H.: Strength characteristics of FRP composite materials for ship structure, Journal of Ocean Engineering and Technology, 27(4), 2013, pp. 45-54. doi: 10.5574/ksoe.2013.27.4.045.10.5574/KSOE.2013.27.4.045
  11. 11. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Wilde K.: Composite GFRP U-shaped footbridge, Polish Maritime Research, 24(s1), 2017, pp. 25-31. doi: 10.1515/pomr-2017-0017.10.1515/pomr-2017-0017
  12. 12. Miśkiewicz M., Okraszewska R., Pyrzowski Ł.: Composite footbridge – synergy effect in cooperation between universities and industry. ICERI2014: 7th International Conference of Education, Research and Innovation, ICERI Proceedings, 2014, pp. 2897-2903.
  13. 13. Pyrzowski Ł., Miśkiewicz M.: Application of foam made of post-consumer pet materials for the construction of footbridges, 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vol. 17, Issue 62, pp. 9-16. doi: 10.5593/sgem2017/62/s26.002.10.5593/sgem2017/62/s26.002
  14. 14. Pyrzowski Ł., Sobczyk B., Witkowski W., Chróścielewski J.: Three-point bending test of sandwich beams supporting the GFRP footbridge design process validation. 3rd Polish Congress of Mechanics (PCM) / 21st International Conference on Computer Methods in Mechanics (CMM), 2016, Taylor & Francis Group, London, pp. 489-492. doi: 10.1201/b20057-104.10.1201/b20057-104
  15. 15. Miśkiewicz M., Daszkiewicz K., Ferenc T., Witkowski W., Chróścielewski J.: Experimental tests and numerical simulations of full scale composite sandwich segment of a foot-and-cycle bridge. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues – Kleiber et al. (Eds), Taylor & Francis Group, London, 2016, pp. 401-404. doi: 10.1201/b20057-86.10.1201/b20057-86
  16. 16. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Sobczyk B., Wilde K.: A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B: Engineering, 126, 2017, pp. 153-161. doi: 10.1016/j.compositesb.2017.06.009.10.1016/j.compositesb.2017.06.009
  17. 17. Pyrzowski Ł., Sobczyk B., Rucka M., Miśkiewicz M., Chróścielewski J.: Composite sandwich footbridge - measured dynamic response vs. FEA. Shell Structures: Theory and Applications. - Vol. 4/ed. W. Pietraszkiewicz, W. Witkowski, Leiden: CRC Press/Balkema, 2018, pp. 457-460.10.1201/9781315166605-105
  18. 18. Pyrzowski Ł., Miśkiewicz M., Chróścielewski J.: Load testing of GFRP composite U-shape footbridge, IOP Conference Series: Materials Science and Engineering, 245, 2017. doi: 10.1088/1757-899X/245/3/032050.10.1088/1757-899X/245/3/032050
  19. 19. Wilde K., Miśkiewicz M., Chróścielewski J.: SHM System of the Roof Structure of Sports Arena „Olivia”, Structural Health Monitoring 2013, Vol. II, pp. 1745-1752.
  20. 20. Kaminski W., Makowska K., Miśkiewicz M., Szulwic J., Wilde K.: System of monitoring of the Forest Opera in Sopot structure and roofing, 15th International Multidisciplinary Scientific GeoConference SGEM 2015, Book 2 Vol. 2, pp. 471-482. doi: 10.5593/SGEM2015/B22/S9.059.10.5593/SGEM2015/B22/S9.059
  21. 21. Mariak A., Miśkiewicz M, Meronk B., Pyrzowski Ł., Wilde K.: Reference FEM model for SHM system of cable-stayed bridge in Rzeszów, Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, 2016, pp. 383-387. doi:10.1201/b20057-82.10.1201/b20057-82
  22. 22. Miśkiewicz M., Pyrzowski Ł., Wilde K., Mitrosz O.: Technical monitoring system for a new part of Gdańsk Deepwater Container Terminal, Polish Maritime Research, 24(s1), 2017, pp. 149-155. doi: 10.1515/pomr-2017-0033.10.1515/pomr-2017-0033
  23. 23. Miśkiewicz M., Mitrosz O., Brzozowski T.: Preliminary field tests and long-term monitoring as a method of design risk mitigation: a case study of Gdańsk Deepwater Container Terminal. Polish Maritime Research, 24(3), 2017, pp. 106-114, doi: 10.1515/pomr-2017-0095.10.1515/pomr-2017-0095
  24. 24. Miśkiewicz M., Meronk B., Brzozowski T., Wilde K.: Monitoring system of the road embankment, Baltic Journal of Roads and Bridge Engineering, 12(4), 2017, pp. 218-224. doi: 10.3846/bjrbe.2017.27.10.3846/bjrbe.2017.27
  25. 25. Miśkiewicz M., Pyrzowski Ł., Chróścielewski J., Wilde K.: Structural Health Monitoring of Composite Shell Footbridge for Its Design Validation, Proceedings 2016 Baltic Geodetic Congress (Geomatics)/ed. Juan E. Guerrero Los Alamitos: IEEE Computer Society Order Number E5972, 2016, pp. 228-233. doi: 10.1109/bgc.geomatics.2016.48.10.1109/BGC.Geomatics.2016.48
  26. 26. Nawab Y., Shahid S., Boyard N., Jacquemin F.: Chemical shrinkage characterization techniques for thermoset resins and associated composites. Journal of Materials Science, 48(16), 2013, pp. 5387-5409. doi: 10.1007/s10853-013-7333-6.10.1007/s10853-013-7333-6
  27. 27. Schoch K.F., Panackal P.A., Frank P.P.: Real-time measurement of resin shrinkage during cure. Thermochimica Acta, 417, 2004, pp. 115-118. doi: 10.1016/j.tca.2003.12.027.10.1016/j.tca.2003.12.027
  28. 28. Shah D.U., Schubel P.J.: Evaluation of cure shrinkage measurement techniques for thermosetting resins. Polymer Testing, 29, 2010, pp. 629-663. doi: 10.1016/j.polymertesting.2010.05.001.10.1016/j.polymertesting.2010.05.001
  29. 29. Huang Y.J., Liang C.M.: Volume shrinkage characteristics in the cure of low-shrink unsaturated polyester resins. Polymer, 37(3), 1996, pp. 401-412. doi: 10.1016/0032-3861(96)82909-0.10.1016/0032-3861(96)82909-0
  30. 30. Nawab Y., Jacquemin F., Casari P., Boyard N., Sobotka V.: Evolution of chemical and thermal curvatures in thermoset-laminated composite plates during the fabrication process. Journal of Composite Materials, 47(3), 2010, pp. 327-339. doi: 10.1177/0021998312440130.10.1177/0021998312440130
  31. 31. Casari P., Gornet L.: Characterization of residual stresses in a composite curved sandwich beam, Composites: Part A, 37(4), 2006, pp. 672-678. doi: 10.1016/j.compositesa.2005.05.020.10.1016/j.compositesa.2005.05.020
  32. 32. White S.R., Hahn H.T.: Process modeling of composite materials: residual stress development during cure. Part II. Experimental validation. Journal of Composite Materials, 26(16), 1992, pp. 2423-2453. doi: 10.1177/002199839202601605.10.1177/002199839202601605
  33. 33. Janowski A., Nagrodzka-Godycka K., Szulwic J., Ziółkowski P.: Remote sensing and photogrammetry techniques in diagnostics of concrete structures. Computers and Concrete, 18(3), 2016, pp. 405-420. doi: 10.12989/cac.2016.18.3.405.10.12989/cac.2016.18.3.405
DOI: https://doi.org/10.2478/pomr-2018-0036 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 151 - 158
Published on: Jun 7, 2018
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Łukasz Pyrzowski, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.