Have a personal or library account? Click to login
Red:Blue ratios differently change yield, nutritional quality and water use efficiency of twelve microgreen crops Cover

Red:Blue ratios differently change yield, nutritional quality and water use efficiency of twelve microgreen crops

Open Access
|Dec 2025

References

  1. Alizaeh, P., Sodaeizade, H., Arani, A. M., & Hakimzadeh, M. A. (2025). Comparing yield, nutrient uptake and water use efficiency of Nasturtium officinale cultivated in aquaponic, hydroponic, and soil systems. Heliyon, 11(3), e42339. https://doi.org/10.1016/j.heliyon.2025.e42339
  2. Alrajhi, A., Alsahli, A., Alhelal, I., Rihan, H., Fuller, M., Alsadon, A., & Ibrahim, A. (2023). The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 12. https://doi.org/10.3390/plants12030463
  3. Arnaldos, T. L., Ferrer, M. A., García, A. A. C., & Muńoz, R. (2002). Changes in peroxidase activity and isoperoxidase pattern during strawberry (Fragaria × ananassa) callus development. Journal of Plant Physiology, 159(4), 429–435. https://doi.org/10.1078/0176-1617-00613
  4. Balik, S., Elgudayem, F., Dasgan, H. Y., Kafkas, N. E., & Gruda, N. S. (2025). Nutritional quality profiles of six microgreens. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-85860-z
  5. Bantis, F. (2021). light spectrum differentially affects the yield and phytochemical content of microgreen vegetables in a plant factory. Plants, 10. https://doi.org/10.3390/plants10102182
  6. Brazaitytė, A., Miliauskienė, J., Vaštakaitė-Kairienė, V., Sutulienė, R., Laužikė, K., Duchovskis, P., & Małek, S. (2021). Effect of different ratios of blue and red led light on Brassicaceae microgreens under a controlled environment. Plants, 10. https://doi.org/10.3390/plants10040801
  7. Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Vaštakaitė, V., Miliauskienė, J., & Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Horticulturae, (1134), 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37
  8. Brazaitytė, A., Sakalauskienė, S., Samuolienė, G., Jankauskienė, J., Viršilė, A., Novičkovas, A., Sirtautas, R., Miliauskienė, J., Vaštakaitė, V., Dabašinskas, L., & Duchovskis, P. (2015). The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chemistry, 173, 600–606. https://doi.org/10.1016/j.foodchem.2014.10.077
  9. Bucky, A., Pičmanová, M., Porley, V., Pont, S., Austin, C., Khan, T., McDougall, G., Johnstone, A., & Stewart, D. (2024). Light manipulation as a route to enhancement of antioxidant properties in red amaranth and red lettuce. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1386988
  10. Bulgari, R., Baldi, A., Ferrante, A., & Lenzi, A. (2017). Yield and quality of basil, swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, 45(2), 119–129. https://doi.org/10.1080/01140671.2016.1259642
  11. Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71–80. https://doi.org/10.1080/00103627509366547
  12. Chen, C.-C., Huang, M.-Y., Lin, K.-H., Wong, S.-L., Huang, W.-D., & Yang, C.-M. (2014). Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Research Journal of Biotechnology, 9.
  13. Chrysargyris, A., & Tzortzakis, N. (2025). Nitrogen, phosphorus, and potassium requirements to improve Portulaca oleracea L. growth, nutrient and water use efficiency in hydroponics. Agronomy, 15(1), 111. https://doi.org/10.3390/agronomy15010111
  14. Clavijo-Herrera, J., Van Santen, E., & Gómez, C. (2018). Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. Horticulturae, 4(3), 16. https://doi.org/10.3390/horticulturae4030016
  15. Craver, J. K., Gerovac, J. R., Lopez, R. G., & Kopsell, D. A. (2017). Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within brassica microgreens. Journal of the American Society for Horticultural Science, 142(1), 3–12. https://doi.org/10.21273/jashs03830-16
  16. Dereje, B., Jacquier, J.-C., Elliott-Kingston, C., Harty, M., & Harbourne, N. (2023). Brassicaceae microgreens: phytochemical compositions, influences of growing practices, postharvest technology, health, and food applications. ACS Food Science & Technology, 3(6), 981–998. https://doi.org/10.1021/acsfoodscitech.3c00040
  17. Di Gioia, F., Hong, J. C., Pisani, C., Petropoulos, S. A., Bai, J., & Rosskopf, E. N. (2023). Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Frontiers in Plant Science, 14, 1220691. https://doi.org/10.3389/fpls.2023.1220691
  18. EFSA Panel on Contaminants in the Food Chain (CONTAM) (2011). Statement on possible public health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA Journal, 8(12). https://doi.org/10.2903/j.efsa.2010.1935
  19. El Haddaji, H., Akodad, M., Skalli, A., Moumen, A., Bellahcen, S., Elhani, S., Urrestarazu, M., Kolar, M., Imperl, J., Petrova, P., & Baghour, M. (2023). Effects of light-emitting diodes (LEDs) on growth, nitrates and osmoprotectant content in microgreens of aromatic and medicinal plants. Horticulturae, 9(4), 494. https://doi.org/10.3390/horticulturae9040494
  20. Fan, X.-X., Xue, F., Song, B., Chen, L.-Z., Xu, G., & Xu, H. (2019). Effects of blue and red light on growth and nitrate metabolism in pakchoi. Open Chemistry, 17(1), 456–464. https://doi.org/10.1515/chem-2019-0038
  21. Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas, R., Krishnapillai, M., & Galagedara, L. (2024). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104(2), 88–102. https://doi.org/10.1139/cjps-2023-0034
  22. Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M., Fujita, M., & Hasanuzzaman, M. (2024). management of secondary metabolite synthesis and biomass in basil (Ocimum basilicum L.) microgreens using different continuous-spectrum LED lights. Plants, 13(10), 1394. https://doi.org/10.3390/plants13101394
  23. Flores, M., Hernández-Adasme, C., Guevara, M. J., & Escalona, V. H. (2024). Effect of different light intensities on agronomic characteristics and antioxidant compounds of Brassicaceae microgreens in a vertical farm system. Frontiers in Sustainable Food Systems, 8, 1349423. https://doi.org/10.3389/fsufs.2024.1349423
  24. Frąszczak, B., Kula-Maximenko, M., Podsędek, A., Sosnowska, D., Unegbu, K. C., & Spiżewski, T. (2023). Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants, 12(22), 3800. https://doi.org/10.3390/plants12223800
  25. Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298. https://doi.org/10.3390/agronomy9060298
  26. Harakotr, B., Charoensup, L., Rithichai, P., Jirakiattikul, Y., & Suthamwong, P. (2025). Yield, bioactive compounds, and antioxidant potential of twenty-three diverse microgreen species grown under controlled conditions. Resources, 14(5), 71. https://doi.org/10.3390/resources14050071
  27. Hayashi, E. (2023). Advances in plant factories: New technologies in indoor vertical farming. (T. Kozai, Ed.). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2023.0126
  28. Hernández, R., & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001
  29. Jasenovska, L., Brestic, M., Barboricova, M., Ferencova, J., Filacek, A., & Zivcak, M. (2024). Analysis of the effects of various light spectra on microgreen species. Folia Horticulturae, 36(2), 197–209. https://doi.org/10.2478/fhort-2023-0012
  30. Keutgen, N., Hausknecht, M., Tomaszewska-Sowa, M., & Keutgen, A. J. (2021). Nutritional and sensory quality of two types of cress microgreens depending on the mineral nutrition. Agronomy, 11(6), 1110. https://doi.org/10.3390/agronomy11061110
  31. Kopsell, D. A., Pantanizopoulos, N. I., Sams, C. E., & Kopsell, D. E. (2012). Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 140, 96–99. https://doi.org/10.1016/j.scienta.2012.04.004
  32. Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B, 89(10), 447–461. https://doi.org/10.2183/pjab.89.447
  33. Kyriacou, M. C., Soteriou, G. A., Colla, G., & Rouphael, Y. (2019). The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chemistry, 285, 468–477. https://doi.org/10.1016/j.foodchem.2019.02.001
  34. Langenfeld, N. J., Pinto, D. F., Faust, J. E., Heins, R., & Bugbee, B. (2022). Principles of nutrient and water management for indoor agriculture. Sustainability, 14(16), 10204. https://doi.org/10.3390/su141610204
  35. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
  36. Lim, S., & Kim, J. (2021). Light quality affects water use of sweet basil by changing its stomatal development. Agronomy, 11(2), 303. https://doi.org/10.3390/agronomy11020303
  37. Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M.-M. (2017). Blue and red led illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. Microgreens. Molecules, 22(12), 2111. https://doi.org/10.3390/molecules22122111
  38. Massa, D., Bonetti, A., Cacini, S., Faraloni, C., Prisa, D., Tuccio, L., & Petruccelli, R. (2019). Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Horticulture, Environment, and Biotechnology, 60(6), 871–881. https://doi.org/10.1007/s13580-019-00169-x
  39. Meas, S., Luengwilai, K., & Thongket, T. (2020). Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265, 109204. https://doi.org/10.1016/j.scienta.2020.109204
  40. Meenakshi, S., & Gnanambigai, D. M. (2009). Total flavanoid and In vitro antioxidant activity of two seaweeds of Rameshwaram Coast, 3(2), 59–62.
  41. Mir, R. A., & Khah, M. A. (2024). Recent progress in enzymatic antioxidant defense system in plants against different environmental stresses. In Improving Stress Resilience in Plants (pp. 203–224). Elsevier. https://doi.org/10.1016/B978-0-443-18927-2.00014-5
  42. Mir, S., Krumins, R., Purmale, L., Chaudhary, V. P., & Ghaley, B. B. (2024). Effects of Light Intensity and Spectrum Mix on Biomass, Growth and Resource Use Efficiency in Microgreen Species. Agronomy, 14(12), 2895. https://doi.org/10.3390/agronomy14122895
  43. Moraru, P. I., Rusu, T., & Mintas, O. S. (2022). Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods, 11(9), 1327. https://doi.org/10.3390/foods11091327
  44. Nicola, S., Hoeberechts, J., & Fontana, E. (2007). Ebb-and-flow and floating systems to grow leafy vegetables: a review for rocket, corn salad, garden cress and purslane. Acta Horticulturae, (747), 585–593. https://doi.org/10.17660/ActaHortic.2007.747.76
  45. Orlando, M., Trivellini, A., Incrocci, L., Ferrante, A., & Mensuali, A. (2022). The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae, 8(3), 217. https://doi.org/10.3390/horticulturae8030217
  46. O’Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z., & Wasson, A. P. (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133–144. https://doi.org/10.1016/j.agsy.2019.05.007
  47. Ouzounis, T., Fretté, X., Rosenqvist, E., & Ottosen, C. (2014). Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of plant physiology, 171 16, 1491–1499. https://doi.org/10.1016/j.jplph.2014.06.012
  48. Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A., Stanghellini, C., Marcelis, L. F. M., Orsini, F., & Gianquinto, G (2019). Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10, 305. https://doi.org/10.3389/fpls.2019.00305
  49. Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J., & Gianquinto, G. (2019). Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue led lighting. Sustainability, 11(15), 4063. https://doi.org/10.3390/su11154063
  50. Pignata, G., Casale, M., & Nicola, S. (2017). Water and nutrient supply in horticultural crops grown in soilless culture: resource efficiency in dynamic and intensive systems. In Advances in Olericulture (pp. 183–219). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-53626-2_7
  51. Pignata, G., Ertani, A., Casale, M., Niñirola, D., Egea-Gilabert, C., Fernández, J. A., & Nicola, S. (2022). Understanding the postharvest phytochemical composition fates of packaged watercress (Nasturtium officinale r. br.) grown in a floating system and treated with Bacillus subtilis as PGPR. Plants, 11(5), 589. https://doi.org/10.3390/plants11050589
  52. Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. Gr., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690
  53. Rizvi, A., Kumar, S., Sharma, M., & Saxena, S. (2024). Functional and antioxidant potential of beetroot, mustard and radish microgreens using spectroscopic techniques. Agriculture (Pol’nohospodárstvo), 70(2), 53–71. https://doi.org/10.2478/agri-2024-0005
  54. Seth, T., Mishra, G. P., Chattopadhyay, A., Deb Roy, P., Devi, M., Sahu, A., Sarangi, S. K., Mhatre, C. S., Lyngdoh, Y. A., Chandra, V., Dikshit, H. K., & Nair, R. M. (2025). Microgreens: functional food for nutrition and dietary diversification. Plants, 14(4), 526. https://doi.org/10.3390/plants14040526
  55. Son, K.-H., & Oh, M.-M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience, 48(8), 988–995. https://doi.org/10.21273/HORTSCI.48.8.988
  56. Stamford, J. D., Stevens, J., Mullineaux, P. M., & Lawson, T. (2023). LED lighting: a grower’s guide to light spectra. HortScience, 58(2), 180–196. https://doi.org/10.21273/HORTSCI16823-22
  57. Tavan, M., Wee, B., Brodie, G., Fuentes, S., Pang, A., & Gupta, D. (2021). Optimizing sensor-based irrigation management in a soilless vertical farm for growing microgreens. Frontiers in Sustainable Food Systems, 4, 622720. https://doi.org/10.3389/fsufs.2020.622720
  58. Teliban, G.-C., Pavăl, N.-E., Mihalache, G., Burducea, M., Stoleru, V., & Lobiuc, A. (2025). modulated light elicitation and associated physiological and molecular processes in phenolic compounds production in Ocimum basilicum l. microgreens. Horticulturae, 11(1), 56. https://doi.org/10.3390/horticulturae11010056
  59. Vrkić, R., Žlabur, J. Š., Dujmović, M., & Benko, B. (2024). Can led lighting be a sustainable solution for producing nutritionally valuable microgreens? Horticulturae. https://doi.org/10.3390/horticulturae10030249
  60. Ying, Q., Kong, Y., Jones-Baumgardt, C., & Zheng, Y. (2020). Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae, 259, 108857. https://doi.org/10.1016/j.scienta.2019.108857
Language: English
Page range: 16 - 28
Submitted on: Sep 15, 2025
|
Accepted on: Dec 3, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Cosimo Matteo Profico, Silvana Nicola, published by Latvia University of Life Sciences and Technologies
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.