References
- Alizaeh, P., Sodaeizade, H., Arani, A. M., & Hakimzadeh, M. A. (2025). Comparing yield, nutrient uptake and water use efficiency of Nasturtium officinale cultivated in aquaponic, hydroponic, and soil systems. Heliyon, 11(3), e42339. https://doi.org/10.1016/j.heliyon.2025.e42339
- Alrajhi, A., Alsahli, A., Alhelal, I., Rihan, H., Fuller, M., Alsadon, A., & Ibrahim, A. (2023). The effect of LED light spectra on the growth, yield and nutritional value of red and green lettuce (Lactuca sativa). Plants, 12. https://doi.org/10.3390/plants12030463
- Arnaldos, T. L., Ferrer, M. A., García, A. A. C., & Muńoz, R. (2002). Changes in peroxidase activity and isoperoxidase pattern during strawberry (Fragaria × ananassa) callus development. Journal of Plant Physiology, 159(4), 429–435. https://doi.org/10.1078/0176-1617-00613
- Balik, S., Elgudayem, F., Dasgan, H. Y., Kafkas, N. E., & Gruda, N. S. (2025). Nutritional quality profiles of six microgreens. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-85860-z
- Bantis, F. (2021). light spectrum differentially affects the yield and phytochemical content of microgreen vegetables in a plant factory. Plants, 10. https://doi.org/10.3390/plants10102182
- Brazaitytė, A., Miliauskienė, J., Vaštakaitė-Kairienė, V., Sutulienė, R., Laužikė, K., Duchovskis, P., & Małek, S. (2021). Effect of different ratios of blue and red led light on Brassicaceae microgreens under a controlled environment. Plants, 10. https://doi.org/10.3390/plants10040801
- Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Vaštakaitė, V., Miliauskienė, J., & Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Horticulturae, (1134), 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37
- Brazaitytė, A., Sakalauskienė, S., Samuolienė, G., Jankauskienė, J., Viršilė, A., Novičkovas, A., Sirtautas, R., Miliauskienė, J., Vaštakaitė, V., Dabašinskas, L., & Duchovskis, P. (2015). The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chemistry, 173, 600–606. https://doi.org/10.1016/j.foodchem.2014.10.077
- Bucky, A., Pičmanová, M., Porley, V., Pont, S., Austin, C., Khan, T., McDougall, G., Johnstone, A., & Stewart, D. (2024). Light manipulation as a route to enhancement of antioxidant properties in red amaranth and red lettuce. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1386988
- Bulgari, R., Baldi, A., Ferrante, A., & Lenzi, A. (2017). Yield and quality of basil, swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, 45(2), 119–129. https://doi.org/10.1080/01140671.2016.1259642
- Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71–80. https://doi.org/10.1080/00103627509366547
- Chen, C.-C., Huang, M.-Y., Lin, K.-H., Wong, S.-L., Huang, W.-D., & Yang, C.-M. (2014). Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Research Journal of Biotechnology, 9.
- Chrysargyris, A., & Tzortzakis, N. (2025). Nitrogen, phosphorus, and potassium requirements to improve Portulaca oleracea L. growth, nutrient and water use efficiency in hydroponics. Agronomy, 15(1), 111. https://doi.org/10.3390/agronomy15010111
- Clavijo-Herrera, J., Van Santen, E., & Gómez, C. (2018). Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. Horticulturae, 4(3), 16. https://doi.org/10.3390/horticulturae4030016
- Craver, J. K., Gerovac, J. R., Lopez, R. G., & Kopsell, D. A. (2017). Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within brassica microgreens. Journal of the American Society for Horticultural Science, 142(1), 3–12. https://doi.org/10.21273/jashs03830-16
- Dereje, B., Jacquier, J.-C., Elliott-Kingston, C., Harty, M., & Harbourne, N. (2023). Brassicaceae microgreens: phytochemical compositions, influences of growing practices, postharvest technology, health, and food applications. ACS Food Science & Technology, 3(6), 981–998. https://doi.org/10.1021/acsfoodscitech.3c00040
- Di Gioia, F., Hong, J. C., Pisani, C., Petropoulos, S. A., Bai, J., & Rosskopf, E. N. (2023). Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Frontiers in Plant Science, 14, 1220691. https://doi.org/10.3389/fpls.2023.1220691
- EFSA Panel on Contaminants in the Food Chain (CONTAM) (2011). Statement on possible public health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA Journal, 8(12). https://doi.org/10.2903/j.efsa.2010.1935
- El Haddaji, H., Akodad, M., Skalli, A., Moumen, A., Bellahcen, S., Elhani, S., Urrestarazu, M., Kolar, M., Imperl, J., Petrova, P., & Baghour, M. (2023). Effects of light-emitting diodes (LEDs) on growth, nitrates and osmoprotectant content in microgreens of aromatic and medicinal plants. Horticulturae, 9(4), 494. https://doi.org/10.3390/horticulturae9040494
- Fan, X.-X., Xue, F., Song, B., Chen, L.-Z., Xu, G., & Xu, H. (2019). Effects of blue and red light on growth and nitrate metabolism in pakchoi. Open Chemistry, 17(1), 456–464. https://doi.org/10.1515/chem-2019-0038
- Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas, R., Krishnapillai, M., & Galagedara, L. (2024). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104(2), 88–102. https://doi.org/10.1139/cjps-2023-0034
- Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M., Fujita, M., & Hasanuzzaman, M. (2024). management of secondary metabolite synthesis and biomass in basil (Ocimum basilicum L.) microgreens using different continuous-spectrum LED lights. Plants, 13(10), 1394. https://doi.org/10.3390/plants13101394
- Flores, M., Hernández-Adasme, C., Guevara, M. J., & Escalona, V. H. (2024). Effect of different light intensities on agronomic characteristics and antioxidant compounds of Brassicaceae microgreens in a vertical farm system. Frontiers in Sustainable Food Systems, 8, 1349423. https://doi.org/10.3389/fsufs.2024.1349423
- Frąszczak, B., Kula-Maximenko, M., Podsędek, A., Sosnowska, D., Unegbu, K. C., & Spiżewski, T. (2023). Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants, 12(22), 3800. https://doi.org/10.3390/plants12223800
- Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298. https://doi.org/10.3390/agronomy9060298
- Harakotr, B., Charoensup, L., Rithichai, P., Jirakiattikul, Y., & Suthamwong, P. (2025). Yield, bioactive compounds, and antioxidant potential of twenty-three diverse microgreen species grown under controlled conditions. Resources, 14(5), 71. https://doi.org/10.3390/resources14050071
- Hayashi, E. (2023). Advances in plant factories: New technologies in indoor vertical farming. (T. Kozai, Ed.). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2023.0126
- Hernández, R., & Kubota, C. (2016). Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66–74. https://doi.org/10.1016/j.envexpbot.2015.04.001
- Jasenovska, L., Brestic, M., Barboricova, M., Ferencova, J., Filacek, A., & Zivcak, M. (2024). Analysis of the effects of various light spectra on microgreen species. Folia Horticulturae, 36(2), 197–209. https://doi.org/10.2478/fhort-2023-0012
- Keutgen, N., Hausknecht, M., Tomaszewska-Sowa, M., & Keutgen, A. J. (2021). Nutritional and sensory quality of two types of cress microgreens depending on the mineral nutrition. Agronomy, 11(6), 1110. https://doi.org/10.3390/agronomy11061110
- Kopsell, D. A., Pantanizopoulos, N. I., Sams, C. E., & Kopsell, D. E. (2012). Shoot tissue pigment levels increase in ‘Florida Broadleaf’ mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 140, 96–99. https://doi.org/10.1016/j.scienta.2012.04.004
- Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceedings of the Japan Academy, Series B, 89(10), 447–461. https://doi.org/10.2183/pjab.89.447
- Kyriacou, M. C., Soteriou, G. A., Colla, G., & Rouphael, Y. (2019). The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chemistry, 285, 468–477. https://doi.org/10.1016/j.foodchem.2019.02.001
- Langenfeld, N. J., Pinto, D. F., Faust, J. E., Heins, R., & Bugbee, B. (2022). Principles of nutrient and water management for indoor agriculture. Sustainability, 14(16), 10204. https://doi.org/10.3390/su141610204
- Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. https://doi.org/10.1042/bst0110591
- Lim, S., & Kim, J. (2021). Light quality affects water use of sweet basil by changing its stomatal development. Agronomy, 11(2), 303. https://doi.org/10.3390/agronomy11020303
- Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M.-M. (2017). Blue and red led illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. Microgreens. Molecules, 22(12), 2111. https://doi.org/10.3390/molecules22122111
- Massa, D., Bonetti, A., Cacini, S., Faraloni, C., Prisa, D., Tuccio, L., & Petruccelli, R. (2019). Soilless tomato grown under nutritional stress increases green biomass but not yield or quality in presence of biochar as growing medium. Horticulture, Environment, and Biotechnology, 60(6), 871–881. https://doi.org/10.1007/s13580-019-00169-x
- Meas, S., Luengwilai, K., & Thongket, T. (2020). Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265, 109204. https://doi.org/10.1016/j.scienta.2020.109204
- Meenakshi, S., & Gnanambigai, D. M. (2009). Total flavanoid and In vitro antioxidant activity of two seaweeds of Rameshwaram Coast, 3(2), 59–62.
- Mir, R. A., & Khah, M. A. (2024). Recent progress in enzymatic antioxidant defense system in plants against different environmental stresses. In Improving Stress Resilience in Plants (pp. 203–224). Elsevier. https://doi.org/10.1016/B978-0-443-18927-2.00014-5
- Mir, S., Krumins, R., Purmale, L., Chaudhary, V. P., & Ghaley, B. B. (2024). Effects of Light Intensity and Spectrum Mix on Biomass, Growth and Resource Use Efficiency in Microgreen Species. Agronomy, 14(12), 2895. https://doi.org/10.3390/agronomy14122895
- Moraru, P. I., Rusu, T., & Mintas, O. S. (2022). Trial protocol for evaluating platforms for growing microgreens in hydroponic conditions. Foods, 11(9), 1327. https://doi.org/10.3390/foods11091327
- Nicola, S., Hoeberechts, J., & Fontana, E. (2007). Ebb-and-flow and floating systems to grow leafy vegetables: a review for rocket, corn salad, garden cress and purslane. Acta Horticulturae, (747), 585–593. https://doi.org/10.17660/ActaHortic.2007.747.76
- Orlando, M., Trivellini, A., Incrocci, L., Ferrante, A., & Mensuali, A. (2022). The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae, 8(3), 217. https://doi.org/10.3390/horticulturae8030217
- O’Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z., & Wasson, A. P. (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems, 174, 133–144. https://doi.org/10.1016/j.agsy.2019.05.007
- Ouzounis, T., Fretté, X., Rosenqvist, E., & Ottosen, C. (2014). Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of plant physiology, 171 16, 1491–1499. https://doi.org/10.1016/j.jplph.2014.06.012
- Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A., Stanghellini, C., Marcelis, L. F. M., Orsini, F., & Gianquinto, G (2019). Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10, 305. https://doi.org/10.3389/fpls.2019.00305
- Pennisi, G., Sanyé-Mengual, E., Orsini, F., Crepaldi, A., Nicola, S., Ochoa, J., Fernandez, J., & Gianquinto, G. (2019). Modelling environmental burdens of indoor-grown vegetables and herbs as affected by red and blue led lighting. Sustainability, 11(15), 4063. https://doi.org/10.3390/su11154063
- Pignata, G., Casale, M., & Nicola, S. (2017). Water and nutrient supply in horticultural crops grown in soilless culture: resource efficiency in dynamic and intensive systems. In Advances in Olericulture (pp. 183–219). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-53626-2_7
- Pignata, G., Ertani, A., Casale, M., Niñirola, D., Egea-Gilabert, C., Fernández, J. A., & Nicola, S. (2022). Understanding the postharvest phytochemical composition fates of packaged watercress (Nasturtium officinale r. br.) grown in a floating system and treated with Bacillus subtilis as PGPR. Plants, 11(5), 589. https://doi.org/10.3390/plants11050589
- Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. Gr., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690
- Rizvi, A., Kumar, S., Sharma, M., & Saxena, S. (2024). Functional and antioxidant potential of beetroot, mustard and radish microgreens using spectroscopic techniques. Agriculture (Pol’nohospodárstvo), 70(2), 53–71. https://doi.org/10.2478/agri-2024-0005
- Seth, T., Mishra, G. P., Chattopadhyay, A., Deb Roy, P., Devi, M., Sahu, A., Sarangi, S. K., Mhatre, C. S., Lyngdoh, Y. A., Chandra, V., Dikshit, H. K., & Nair, R. M. (2025). Microgreens: functional food for nutrition and dietary diversification. Plants, 14(4), 526. https://doi.org/10.3390/plants14040526
- Son, K.-H., & Oh, M.-M. (2013). Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience, 48(8), 988–995. https://doi.org/10.21273/HORTSCI.48.8.988
- Stamford, J. D., Stevens, J., Mullineaux, P. M., & Lawson, T. (2023). LED lighting: a grower’s guide to light spectra. HortScience, 58(2), 180–196. https://doi.org/10.21273/HORTSCI16823-22
- Tavan, M., Wee, B., Brodie, G., Fuentes, S., Pang, A., & Gupta, D. (2021). Optimizing sensor-based irrigation management in a soilless vertical farm for growing microgreens. Frontiers in Sustainable Food Systems, 4, 622720. https://doi.org/10.3389/fsufs.2020.622720
- Teliban, G.-C., Pavăl, N.-E., Mihalache, G., Burducea, M., Stoleru, V., & Lobiuc, A. (2025). modulated light elicitation and associated physiological and molecular processes in phenolic compounds production in Ocimum basilicum l. microgreens. Horticulturae, 11(1), 56. https://doi.org/10.3390/horticulturae11010056
- Vrkić, R., Žlabur, J. Š., Dujmović, M., & Benko, B. (2024). Can led lighting be a sustainable solution for producing nutritionally valuable microgreens? Horticulturae. https://doi.org/10.3390/horticulturae10030249
- Ying, Q., Kong, Y., Jones-Baumgardt, C., & Zheng, Y. (2020). Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae, 259, 108857. https://doi.org/10.1016/j.scienta.2019.108857
