Have a personal or library account? Click to login

Investigation of the effectiveness of eight different metal artifact reduction algorithms in reducing extracorporeal metal artifacts: a phantom study using the Gumbel method

By:
Open Access
|Nov 2024

References

  1. Ichikawa K. CT super basic. Tokyo, Japan: Ohmsha; 2015.
  2. Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018;38(2):450-461. https://doi.org/10.1148/rg.2018170102
  3. Greffier J, Larbi A, Frandon J, Daviau PA, Beregi JP, Pereira F. Influence of iterative reconstruction and dose levels on metallic artifact reduction: a phantom study within four CT systems. Diagn Interv Imaging. 2019;100(5):269-277. https://doi.org/10.1016/j.diii.2018.12.007
  4. Huang JY, Kerns JR, Nute JL, et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol. 2015;60(3):1047-1067. https://doi.org/10.1088/0031-9155/60/3/1047
  5. Selles M, van Osch JAC, Maas M, Boomsma MF, Wellenberg RHH. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur J Radiol. 2024;170:111276. https://doi.org/10.1016/j.ejrad.2023.111276
  6. Hauser TK, Oergel A, Hurth H, Ernemann U, Seeger A. Artifact reduction in the diagnosis of vasospasm in computed tomographic perfusion: potential of iterative metal artifact reduction. J Comput Assist Tomogr. 2019;43(4):553-558. https://doi.org/10.1097/rct.0000000000000879
  7. Aissa J, Boos J, Sawicki LM, et al. Iterative metal artifact reduction (MAR) in postsurgical chest CT: comparison of three iMARalgorithms. Br J Radiol. 2017;90(1079):20160778. https://doi.org/10.1259/bjr.20160778
  8. Pagniez J, Legrand L, Khung S, et al. Metal artifact reduction on chest computed tomography examinations: comparison of the iterative metallic artifact reduction algorithm and the monoenergetic approach. J Comput Assist Tomogr. 2017;41(3):446-454. https://doi.org/10.1097/rct.0000000000000544
  9. Boomsma MF, Warringa N, Edens MA, et al. Quantitative analysis of orthopedic metal artifact reduction in 64-slice computed tomography scans in large head metal-on-metal total hip replacement, a phantom study. Springerplus. 2016;5:405. https://doi.org/10.1186/s40064-016-2006-y
  10. Pan YN, Chen G, Li AJ, et al. Reduction of metallic artifacts of the post-treatment intracranial aneurysms: effects of single energy metal artifact reduction algorithm. Clin Neuroradiol. 2019;29(2):277-284. https://doi.org/10.1007/s00062-017-0644-2
  11. Aissa J, Thomas C, Sawicki LM, et al. Iterative metal artifact reduction in CT: can dedicated algorithms improve image quality after spinal instrumentation? Clin Radiol. 2017;72(5):428.e7-428.e12. https://doi.org/10.1016/j.crad.2016.12.006
  12. Neroladaki A, Martin SP, Bagetakos I, et al. Metallic artifact reduction by evaluation of the additional value of iterative reconstruction algorithms in hip prosthesis computed tomography imaging. Medicine (Baltimore). 2019;98(6):e14341. https://doi.org/10.1097/md.0000000000014341
  13. Hoyoshi K, Satou T, Okada A. [Effect of hybrid iterative reconstruction on CT image quality using metal artifact reduction]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(8):797-804. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.8.797
  14. Takayanagi T, Arai T, Amanuma M, et al. [Pacemaker-induced metallic artifacts in coronary computed tomography angiography: clinical feasibility of single energy metal artifact reduction technique]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73(6):460-466. Japanese. https://doi.org/10.6009/jjrt.2017_jsrt_73.6.460
  15. Nagayama Y, Tanoue S, Oda S, et al. Metal artifact reduction in head CT performed for patients with deep brain stimulation devices: effectiveness of a single-energy metal artifact reduction algorithm. AJNR Am J Neuroradiol. 2020;41(2):231-237. https://doi.org/10.3174/ajnr.a6375
  16. Tsuboi K, Fukunaga M, Yamamoto H. [The effect of metal artifact reduction at different calibrated and display field of views in computed tomography]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(12):1237-1244. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.12.1237
  17. Takada K, Ichikawa K, Banno S, Otobe K. [Suggestion of the relative artifact index for noise-independent evaluation of the streak artifact]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(4):315-325. Japanese. https://doi.org/10.6009/jjrt.2018_jsrt_74.4.315
  18. Imai K, Ikeda M, Wada S, et al. Analysis of streak artifacts on CT images using statistics of extremes. Br J Radiol. 2007;80(959):911-918. https://doi.org/10.1259/bjr/93741044
  19. Nakamura S, Kawata H, Kuroki H, Mizoguchi A. [Effect of reconstruction technique for metal artifact reduction in computed tomography by changing display field of view]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(11):1096-1102. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.11.1096
  20. Kitaguchi S, Imai K, Ueda S, et al. [Quantitative evaluation of metal artifacts on CT images on the basis of statistics of extremes]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72(5):402-409. Japanese. https://doi.org/10.6009/jjrt.2016_jsrt_72.5.402
  21. Nakane J, Kobayashi Y, Shiozawa T. [Isotropic evaluation of streak artifact using extreme value statistical analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015;71(12):1165-1173. Japanese. https://doi.org/10.6009/jjrt.2015_jsrt_71.12.1165
  22. Nomura Y, Watanabe H, Manila NG, Asai S, Kurabayashi T. Evaluation of streak metal artifacts in cone beam computed tomography by using the Gumbel distribution: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;131(4):494-502. https://doi.org/10.1016/j.oooo.2020.08.031
  23. Imai K, Ikeda M, Enchi Y, Niimi T. Quantitative assessment of image noise and streak artifact on CT image: comparison of z-axis automatic tube current modulation technique with fixed tube current technique. Comput Med Imaging Graph. 2009;33(5):353-358. https://doi.org/10.1016/j.compmedimag.2009.02.003
  24. Imai K, Ikeda M, Enchi Y, Niimi T. Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values. Med Phys. 2009;36(2):492-499. https://doi.org/10.1118/1.3056554
  25. Ishikawa T, Suzuki S, Harashima S, Fukui R, Kaiume M, Katada Y. Metal artifacts reduction in computed tomography: A phantom study to compare the effectiveness of metal artifact reduction algorithm, model-based iterative reconstruction, and virtual monochromatic imaging. Medicine (Baltimore). 2020 11;99(50):e23692. https://doi.org/10.1097/md.0000000000023692
  26. Wayer DR, Kim NY, Otto BJ, Grayev AM, Kuner AD. Unintended consequences: review of new artifacts introduced by iterative reconstruction CT metal artifact reduction in spine imaging. AJNR Am J Neuroradiol. 2019;40(11):1973-1975. https://doi.org/10.3174/ajnr.a6238
DOI: https://doi.org/10.2478/pjmpe-2024-0023 | Journal eISSN: 1898-0309 | Journal ISSN: 1425-4689
Language: English
Page range: 189 - 196
Submitted on: Jun 3, 2024
Accepted on: Jul 30, 2024
Published on: Nov 7, 2024
Published by: Polish Society of Medical Physics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Keiko Suzuki, Hiroe Muto, published by Polish Society of Medical Physics
This work is licensed under the Creative Commons Attribution 4.0 License.