Have a personal or library account? Click to login
Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm Cover

Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm

Open Access
|Jul 2024

References

  1. Hurricane, O.A., Patel, P.K., Betti, R., Froula, D.H., Regan, S.P., Slutz, S.A., Gomez, M.R. & Sweeney, M.A. (2023). Physics principles of inertial confinement fusion and US program overview. Rev. Mod. Phys. 95(2), 025005. DOI: 10.1103/RevModPhys.95.025005.
  2. Kraus, M., Diao, Z., Weishaupt, K., Spatz, J.P., Täschner, K., Bartzsch, H., Schmittgens, R. & Brunner, R. (2019). Combined ‘moth-eye’structured and graded index-layer anti-reflecting coating for high index glasses. Opt. Express 27(24), 34655–34664. DOI: 10.1364/OE.27.034655.
  3. Choi, K., Yoon, Y., Jung, J., Ahn, C.W., Lee, G.J., Song, Y.M., Ko, M.J., Lee, H.S., Kim, B. & Kang, I.S. (2017). Super-Antireflective Structure Films with Precisely Controlled Refractive Index Profile. Adv. Opt. Mater. 5(3), 1600616. DOI: 10.1002/adom.201600616.
  4. Rostami, M., Pirvaram, A., Talebzadeh, N. & O’Brien, P.G. (2021). Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renew. Energ. 171, 1202–1212. DOI: 10.1016/j.renene.2021.03.007.
  5. Shanmugam, N., Pugazhendhi, R., Madurai Elavarasan, R., Kasiviswanathan, P. & Das, N. (2020). Anti-reflective coating materials: A holistic review from PV perspective. Energy 13(10), 2631. DOI: 10.3390/en13102631.
  6. Zhang, X., Lu, Q., Cheng, Y., Liu, L., Shan, Y., Zhang, G. & Li, D. (2019). Moth-eye-like antireflection coatings based on close-packed solid/hollow silica nanospheres. J. Sol-Gel Sci. Technol. 90, 330–338. DOI: 10.1007/s10971-018-04912-1.
  7. Kim, M.S., Yeo, J.E., Choi, H., Chang, S., Kim, D.H. & Song, Y.M. (2023). Evolution of natural eyes and biomimetic imaging devices for effective image acquisition. J. Mater. Chem. C 11(36), 12083–12104. DOI: 10.1039/D3TC01883K.
  8. Stanciu, S.G., König, K., Song, Y.M., Wolf, L., Charitidis, C.A., Bianchini, P. & Goetz, M. (2023). Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. Biophys. Rev. 4(2), 021307. DOI: 10.1063/5.0133027.
  9. Liu, Z., Lian, Z., Ren, W., Xu, J., & Yu, H. (2023). Hierarchically structured stainless-steel surfaces with superior superhydrophobicity and anti-reflection. Materials Letters 350, 134917. DOI: 10.1016/j.matlet.2023.134917.
  10. Wu, P., Xue, Z., Yu, T. & Penkov, O. V. (2023). Transparent Self-cleaning Coatings: A Review. Coatings 13, 1270. DOI: 10.20944/preprints202306.0563.v1
  11. Jiao, Z., Wang, Z., Wang, Z. & Han, Z. (2023). Multi-functional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability. Nanomaterials 13(12), 1855. DOI: 10.3390/nano13121855.
  12. Wang, D., Li, Y., Wen, Y., Li, X. & Du, X. (2021). Simple and low cost fabrication of large area nanocoatings with mechanical robustness, enhanced broadband transmittance and antifogging. Colloids Surf. A Physicochem. Eng. Asp. 629, 127522. DOI: 10.1016/j.colsurfa.2021.127522.
  13. Xi, R., Wang, Y., Li, X., Zhang, X. & Du, X. (2020). A facile strategy to form three-dimensional network structure for mechanically robust superhydrophobic nanocoatings with enhanced transmittance. J. Colloid Interf. Sci. 563, 42–53. DOI: 10.1016/j.jcis.2019.12.049.
  14. Dobrowolski, J.A., Poitras, D., Ma, P., Vakil, H. & Acree, M. (2002). Toward perfect antireflection coatings: numerical investigation. Appl. Optics 41(16), 3075–3083. DOI: 10.1364/AO.41.003075.
  15. Tajima, N., Murotani, H. & Matsudaira, T. (2023). Optical multicoating using low-refractive-index SiO2 optical thin films deposited by sputtering and electron beam evaporation. Thin Solid Films 776, 139824. DOI: 10.1016/j.tsf.2023.139824.
  16. Feng, C., Zhang, P., Zhang, W., Sun, J., Wang, J., Zhao, Y. & Shao, J. (2023). “Interface-free” ultrabroadband antireflection film based on nanorod structure with continuous change in refractive index. Opt. Mater. 141, 113965. DOI: 10.1016/j.optmat.2023.113965.
  17. Pfeiffer, K., Ghazaryan, L., Schulz, U. & Szeghalmi, A. (2019). Wide-angle broadband antireflection coatings prepared by atomic layer deposition. ACS Appl. Mater. Interf. 11(24), 21887–21894. DOI: 10.1021/acsami.9b03125.
  18. He, M., Wang, P., Xiao, P., Jia, X., Luo, J. & Jiang, B. (2023). Hollow silica nanospheres synthesized by one-step etching method to construct optical coatings with controllable ultra-low refractive index. Colloid Surf. A 670, 131433. DOI: 10.1016/j.colsurfa.2023.131433.
  19. Wu, H., Liu, C., Zhu, Z., Shao, Y., Lin, J., Wen, J., Wang, H., Zhang, Y., Liang, T., Shao, Y. & Shen, W. (2023). Nanoporous Silicon Dioxide Films for Large Area and Low-Cost Fabrication of Ultra-Low Refractive Index Coatings. ACS Appl. Nano Mater. 6(17), 15437–15444. DOI: 10.1021/acsanm.3c01963.
  20. Ye, L., Zhang, X., Zhang, Y., Li, Y., Zheng, W. & Jiang, B. (2016). Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. J. Sol-Gel Sci. Technol. 80, 1–9. DOI: 10.1007/s10971-016-4051-y.
  21. Ziming, C., Fuqiang, W., Dayang, G., Huaxu, L. & Yong, S. (2020). Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window”. Sol. Energ. Mater. Sol. C. 213, 110563. DOI: 10.1016/j.solmat.2020.110563.
  22. Joshi, D.N., Atchuta, S.R., Reddy, Y.L., Kumar, A.N. & Sakthivel, S. (2019). Super-hydrophilic broadband anti-reflective coating with high weather stability for solar and optical applications. Sol. Energ. Mater. Sol. C. 200, 110023. DOI: 10.1016/j.solmat.2019.110023.
  23. Lu, M., Liu, Q., Wang, Z., Zhang, X., Luo, G., Lu, J., Zeng, D., Zhao, X. & Tian, S. (2023). Facile preparation of porous SiO2 antireflection film with high transmittance and hardness via self-templating method for perovskite solar cells. Mater. Today Chem. 29, 101473. DOI: 10.1016/j.mtchem.2023.101473.
  24. Yoldas, B.E. & Partlow, D.P. (1985). Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129(1-2), 1–14. DOI: 10.1016/0040-6090(85)90089-6.
  25. Ding, R., Cui, X., Zhang, C., Zhang, C. & Xu, Y. (2015). Tri-wavelength broadband antireflective coating built from refractive index controlled MgF2 films. J. Mater. Chem. C 3(13), 3219–3224. DOI: 10.1039/C4TC02542C.
  26. Li, X., Zou, L., Wu, G. & Shen, J. (2014). Laser-induced damage on ordered and amorphous sol-gel silica coatings. Opt. Mater. Express 4(12), 2478–2483. DOI: 10.1364/OME.4.002478.
  27. Lin, P., Mah, M., Randi, J., DeFrances, S., Bernot, D. & Talghader, J.J. (2023). High average power optical properties of silica aerogel thin film. Thin Solid Films, 768, 139722. DOI: 10.1016/j.tsf.2023.139722.
  28. Fan, Q., Liu, H., Jia, X., Yan, L. & Jiang, B. (2022). Study on the Hydrophobic Modification of MTES/NH3 Vapor Surface Treatment for SiO2 Broadband Anti-Reflection Coating. Mater. 15(3), 912. DOI: 10.3390/ma15030912.
  29. Wang, X. & Shen, J. (2012). A review of contamination-resistant antireflective sol–gel coatings. J. Sol-Gel Sci. Technol. 61, 206–212. DOI: 10.1007/s10971-011-2615-4.
  30. Jiang, X., Tang, X., Tang, L., Zhang, B. & Mao, H. (2019). Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceram. Inter. 45(6), 7673–7680. DOI: 10.1016/j.ceramint.2019.01.067.
  31. Dong, S.Y., Jiao, H.F., Wang, Z.S., Zhang, J.L. & Cheng, X.B. (2022). Interface and defects engineering for multilayer laser coatings. Prog. Surf. Sci. 97(3), 100663. DOI: 10.1016/j.progsurf.2022.100663.
  32. Rao, A.V., Latthe, S.S., Nadargi, D.Y., Hirashima, H. & Ganesan, V. (2009). Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method. J. Colloid Interf. Sci. 332(2), 484–490. DOI: 10.1016/j.jcis.2009.01.012.
  33. Thomas, I.M. (1992). Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Optics 31(28), 6145–6149. DOI: 10.1364/AO.31.006145.
  34. Wang, J., Wang, T., Wang, X., Yang, W., Wang, Z., Li, M. & Shi, L. (2023). Effect of applied voltage on localized deposition of silicon dioxide-like films on stainless steel using atmospheric pressure microplasma jet. Plasma Chem. Plasma P. 43(4), 879–899. DOI: 10.1007/s11090-023-10332-z.
  35. Zhang, J., Yuan, J., Tian, P., Mao, J. & Zhang, Q. (2023). Preparation of gradient refractive index films on glass surface and its anti-reflection properties. J. Alloy. Compd. 972, 172831. DOI: 10.1016/j.jallcom.2023.172831.
  36. Zhao, Y., Gao, W., Shao, J. & Fan, Z. (2004). Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation. Appl. Surf. Sci. 227(1–4), 275–281. DOI: 10.1016/j.apsusc.2003.12.006.
  37. Song, Z., Cheng, X., Ma, H., Zhang, J., Ma, B., Jiao, H. & Wang, Z. (2017). Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064 nm nanosecond laser pulses. Appl. Optics 56(4), C188-C192. DOI: 10.1364/AO.56.00C188.
  38. Chen, X.Q., Zu, X.T., Zheng, W.G., Jiang, X.D., Lü, H.B., Ren, H., Zhang, Y.Z. & Liu, C.M. (2006). Experimental research of laser-induced damage mechanism of the sol-gel SiO2 and IBSD SiO2 thin films. Acta Phys. Sin-Chin. Ed. 55(3), 1201–1206. DOI: http://wulixb.iphy.ac.cn/CN/Y2006/V55/I3/1201.
  39. Zhang, L., Xu, Y., Huang, Z.X., Yang, D.J., Jiang, X.D., Wu, D., Sun, Y. H. &Wei, X.F. (2005). Effect of PEG on laser damage of sol-gel SiO2 anti-reflective coating. High Power Laser Part. Beams 17(05), 669–672. DOI: CNKI:SUN:QJGY.0.2005-05-008.
Language: English
Page range: 25 - 30
Published on: Jul 12, 2024
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Lili Wan, Jie Yang, Xiaoru Liu, Jiayi Zhu, Gang Xu, Chenchun Hao, Xuecheng Chen, Zhengwei Xiong, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.