References
- Jain, T., Kumar, H. & Dutta, P.K. (2016). D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine. In P. K. Dutta (Ed.), Chitin and Chitosan for Regenerative Medicine (pp. 279–295). Springer.
- Sampoorna, M., Mahender, M. & Bhavani, S.V. (2020). ORTHOLORD TABLETS: A Blend of Natural Ingredients Provides Nutritional Support for Joint Health. Asian J. Appl. Sci. Technol. 4(2), 17–36. DOI: 10.38177/AJAST.2020.4204.
- Kantor, E.D., Lampe, J.W., Navarro, S.L., Song, X., Milne, G.L. & White, E. (2014). Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J. Altern. Complement. Med. 20(6), 479–485. DOI: 10.1089/acm.2013.0323.
- Wu, S., Dai, X., Shilong, F., Zhu, M., Shen, X., Zhang, K. & Li, S. (2018). Antimicrobial and antioxidant capacity of glucosamine-zinc (II) complex via non-enzymatic browning reaction. Food Sci. Biotechnol. 27(1), 1–7. DOI: 10.1007/s10068-017-0192-1.
- Shekhar, S., Sharma, R., Sharma, S., Sharma, B., Sarkar, A. & Jain, P. (2020). An exploration of electrocatalytic analysis and antibacterial efficacy of electrically conductive poly (D-glucosamine)/graphene oxide bionanohybrid. Carbohydr. Polym. 240, 1–13. DOI: 10.1016/j.carbpol.2020.116242.
- Chesnokov, V., Gong, B., Sun, C. & Itakura, K. (2014). Anti-cancer activity of glucosamine through inhibition of N-linked glycosylation. Cancer Cell Int. 14(1), 1–10. DOI: 10.1186/1475-2867-14-45.
- Saengnipanthkul, S., Waikakul, S., Rojanasthien, S., Totemchokchyakarn, K., Srinkapaibulaya, A., Cheh Chin, T., Mai Hong, N., Bruyère, O., Cooper, C. & Reginster, J.Y. (2019). Differentiation of patented crystalline glucosamine sulfate from other glucosamine preparations will optimize osteoarthritis treatment. Int. J. Rheum. Dis., 22(3), 376–385. DOI: 10.1111/1756-185X.13068.
- Zahedipour, F., Dalirfardouei, R., Karimi, G. & Jamialahmadi, K. (2017). Molecular mechanisms of anticancer effects of Glucosamine. Biomed. Pharmacother. 95, 1051–1058. DOI: 10.1016/j.biopha.2017.08.122.
- Towheed, T., Maxwell, L., Anastassiades, T.P., Shea, B., Houpt, J., Welch, V., Hochberg, M.C. & Wells, G.A. (2005). Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst. Rev. (2), 1–58. DOI: 10.1002/14651858.CD002946.pub2.
- Altman, R.D. (2009). Glucosamine therapy for knee osteoarthritis: pharmacokinetic considerations. Expert Rev. Clin. Pharmacol. 2(4), 359–371. DOI: 10.1586/ecp.09.17.
- Amarase, C., Tanavalee, A., Jumroonwong, W., Tanavalee, C., Tantavisut, S. & Ngarmukos, S. (2018). Patients’ Real Life Experience in Using Glucosamine Sulfate for Treatment of Knee Osteoarthritis Under The Comptroller General’s Department (CGD) Reimbursement Protocol: A Preliminary Report. J. Med. Assoc. Thai., 101(3), 223–230.
- Meulyzer, M., Vachon, P., Beaudry, F., Vinardell, T., Richard, H., Beauchamp, G. & Laverty, S. (2008). Comparison of pharmacokinetics of glucosamine and synovial fluid levels following administration of glucosamine sulphate or glucosa-mine hydrochloride. Osteoarthr. Cartil. 16(9), 973–979. DOI: 10.1016/j.joca.2008.01.006.
- Bruyere, O., Pavelka, K., Rovati, L.C., Deroisy, R., Olejarova, M., Gatterova, J., Giacovelli, G. & Reginster, J.-Y. (2004). Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause, 11(2), 138–143. DOI: 10.1097/01.gme.0000087983.28957.5d.
- Tenti, S., Giordano, N., Mondanelli, N., Giannotti, S., Maheu, E. & Fioravanti, A. (2020). A retrospective observational study of glucosamine sulfate in addition to conventional therapy in hand osteoarthritis patients compared to conventional treatment alone. Aging. Clin. Exp. Res., 32, 1161–1172. DOI: 10.1007/s40520-019-01305-4.
- Veronese, N., Ecarnot, F., Cheleschi, S., Fioravanti, A. & Maggi, S. (2022). Possible synergic action of non-steroidal anti-inflammatory drugs and glucosamine sulfate for the treatment of knee osteoarthritis: a scoping review. BMC Musculoskelet. Disord. 23(1), 1–9. DOI: 10.1186/s12891-022-06046-6.
- Mojarrad, J.S., Nemati, M., Valizadeh, H., Ansarin, M. & Bourbour, S. (2007). Preparation of Glucosamine from Exoskeleton of Shrimp and Predicting Production Yield by Response Surface Methodology. J. Agric. Food Chem. 55, 2246–2250. DOI: 10.1021/jf062983a.
- Elieh Ali Komi, D., Sharma, L. & Dela Cruz, C.S. (2018). Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 54(2), 213–223. DOI: 10.1007/s12016-017-8600-0.
- Novikov, V.Y. (2004). Acid Hydrolysis of Chitin and Chitosan. Russ. J. Appl. Chem. 77(3), 484–487. DOI: 10.1023/B:RJAC.0000031297.24742.b9.
- Rojas, J., Madrigal, J. & Ortiz, J. (2015). Effect of Acid Hydrolysis on Tableting Properties of Chitin Obtained from Shrimp Heads. Trop. J. Pharm. Res., 14(7), 1137–1144. DOI: 10.4314/tjpr.v14i7.3.
- Munjal, S. & Singh, A. (2020). The Arrhenius Acid and Base Theory. In S. Ambrish (Ed.), Corrosion. IntechOpen.
- Lin, Y. (2023). Whole-process optimization for industrial production of glucosamine sulfate sodium chloride based on QbD concept. Chin. J. Chem. Eng. 54, 153–161. DOI: 10.1016/j.cjche.2022.03.025.
- Ramırez, M.G., Avelizapa, L.R., Avelizapa, N.R. & Camarillo, R.C. (2004). Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods, 56(2), 213–219. DOI: 10.1016/j.mimet.2003.10.011.
- Swartz, M. (2010). HPLC detectors: a brief review. J. Liq. Chromatogr. Relat. Technol. 33(9–12), 1130–1150. DOI: 10.1080/10826076.2010.484356.
- Yan, X. (2014). High performance liquid chromatography for carbohydrate analysis. In Z. Yuegang (Ed.), High-Performance Liquid Chromatography (HPLC): Principles, Practices and Procedures (pp. 1–20). Nova Science.
- Fish Information & Services. (2018). Shrimp exporters face prons and cons this year. https://seafood.media/fis/worldnews/worldnews.asp?l=e&id=100412&ndb=1
- Sowcharoensuk, C. (2019). Industry Outlook 2019–2021: Processed Seafood. Krungsri Research. Retrieved June 27, 2022, from https://www.krungsri.com/en/research/industry/industry-outlook/Food-Beverage/Processed-Seafood/IO/io-frocessed-seafood-20-th
- Bassig, R.A., Obinque, A.V., Nebres, V.T., Delos Santos, V.H., Peralta, D.M. & Madrid, A.J.J. (2022). Black tiger shrimp processing waste can be converted into a value-added powder. Responsible Seafood Advocate. Retrieved June 27, 2022, from https://www.globalseafood.org/advocate/black-tiger-shrimp-processing-waste-can-be-converted-into-a-value-added-powder/.
- Benavente, M., Arias, S., Moreno, L. & Martínez, J. (2015). Production of glucosamine hydrochloride from crustacean shell. J. Pharm. Pharmacol. 3(1), 20–26. DOI: 10.17265/2328-2150/2015.01.003.
- Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428. DOI: 10.1021/ac60147a030.
- Magaña, A.A., Wrobel, K., Escobosa, A.R.C. & Wrobel, K. (2014). Fast determination of glucosamine in pharmaceutical formulations by high performance liquid chromatography without pre-column derivatization. Acta Univ. 24(2), 16–22. DOI: 10.15174/au.2014.717.
- Donzelli, B.G.G., Ostroff, G. & Harman, G.E. (2003). Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydr. Res. 338(18), 1823–1833. DOI: 10.1016/S0008-6215(03)00269-6.
- Chang, H., Chen, Y. & Tan, F. (2011). Antioxidative properties of a chitosan–glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food Chem., 124(2), 589–595. DOI: 10.1016/j.foodchem.2010.06.080.
- Choi, Y.J., & Shin, Y.C. (2000). Microbial enzymes for the production of glucosamine and N-acetylglucosamine from chitinous biomass. Proceedings of the Korean Society for Applied Microbiology Conference.
- Gandhi, N. & Laidler, J.K. (2002). Preparation of glucosamine hydrochloride. In Alberta Research Council Inc. (Ed.). Washington, DC, USA: United States patent US 6,486,307.
- Martin Xavier, K. & Ramachandran, K. (2006). Standardization of Optimum Conditions for the Production of Glucosamine Hydrochiloride from Chitin Central Institute of Fisheries Technology].
- Zhang, P. & Sutheerawattananonda, M. (2020). Kinetic models for glucosamine production by acid hydrolysis of chitin in five mushrooms. Int. J. Chem. Eng., 2020, 1-8. DOI: 10.1155/2020/5084036.
- Shī, X.W., Shī, M., Wú, M.Y. & Shī, L.K. (2014). Glucosamine sulfate production method. In L. Yangzhou Rixing Bio-Tech Co. (Ed.). China: CN103509063A.
- Hu, R., Lin, L., Liu, T., Ouyang, P., He, B., & Liu, S. (2008). Reducing sugar content in hemicellulose hydrolysate by DNS method: a revisit. J. Biobased Mater. Bio. 2(2), 156–161. DOI: 10.1166/jbmb.2008.306.
- Jain, A., Jain, R. & Jain, S. (2020). Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology: Principles and Techniques (pp. 181–183). DOI: 10.1007/978-1-4939-9861-6_43.
- Rivers, D.B., Gracheck, S.J., Woodford, L.C. & Emert, G.H. (1984). Limitations of the NNS assay for reducing sugars from saccharified lignocellulosics [Trichoderma reesei]. Biotechnol. Bioeng. 26(7), 800–802. DOI: 10.1002/bit.260260727.
- Tihomirova, K., Dalecka, B. & Mezule, L. (2016). Application of conventional HPLC RI technique for sugar analysis in hydrolysed hay. Agron. Res. 14(5), 1713–1719.
- Deshavath, N.N., Mukherjee, G., Goud, V.V., Veeranki, V.D. & Sastri, C.V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 156, 180–185. DOI: 10.1016/j.ijbiomac.2020.04.045.
- Kazakevich, Y., McBrien, M. & LoBrutto, R. (2007). Computer-Assisted HPLC and Knowledge Management. In HPLC for Pharmaceutical Scientists (pp. 503–532). John Wiley & Sons. DOI: 10.1002/9780470087954.ch10.
- Schwald, W., Chan, M., Breuil, C. & Saddler, J. (1988). Comparison of HPLC and colorimetric methods for measuring cellulolytic activity. Appl. Microbiol. Biotechnol., 28, 398–403. DOI: 10.1007/BF00268203.
- Hasnaoui, N., Jbir, R., Mars, M., Trifi, M., Kamal-Eldin, A., Melgarejo, P. & Hernandez, F. (2011). Organic acids, sugars, and anthocyanins contents in juices of Tunisian pomegranate fruits. Int. J. Food Prop. 14(4), 741–757. DOI: 10.1080/10942910903383438.
- Sims, A. (1995). HPLC analysis of sugars in foods containing salt. J. Agric. Food Chem., 43(2), 377–380. DOI: 10.1021/jf00050a022.
- Holc, D., Pruss, A. & Komorowska-Kaufman, M. (2018). The possibility of using UV absorbance measurements to interpret the results of organic matter removal in the biofiltration process. Rocz. Ochr. Śr. 20, 326–341.
- Uchiho, Y., Goto, Y., Kamahori, M., Aota, T., Morisaki, A., Hosen, Y. & Koda, K. (2015). Far-ultraviolet absorbance detection of sugars and peptides by high-performance liquid chromatography. J. Chromatogr. A, 1424, 86–91. DOI: 10.1016/j.chroma.2015.11.006.
- Jalaludin, I. & Kim, J. (2021). Comparison of ultra-violet and refractive index detections in the HPLC analysis of sugars. Food Chem. 365(130514), 1–8. DOI: 10.1016/j.foodchem.2021.130514.
- Aghazadeh-Habashi, A., Sattari, S., Pasutto, F. & Jamali, F. (2002). High performance liquid chromatographic determination of glucosamine in rat plasma. J. Pharm. Sci. 5(2), 176–180.
- Kosman, V., Karlina, M., Pozharitskaya, O., Shikov, A. & Makarov, V. (2017). HPLC determination of glucosamine hydrochloride and chondroitin sulfate, weakly absorbing in the near UV region, in various buffer media. J. Anal. Chem. 72(8), 879–885. DOI: 10.1134/S106193481708007X.
- Russell, A.S., Aghazadeh-Habashi, A. & Jamali, F. (2002). Active ingredient consistency of commercially available glucosamine sulfate products. J. Rheumatol. 29(11), 2407–2409.
- El-Saharty, Y.S. & Bary, A.A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Anal. Chim. Acta, 462(1), 125–131. DOI: 10.1016/S0003-2670(02)00279-9.
- Mohammadi, M., Zamani, A. & Karimi, K. (2012). Determination of glucosamine in fungal cell walls by high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 60(42), 10511–10515. DOI: 10.1021/jf303488w.
- Way, W.K., Gibson, K.G. & Breite, A.G. (2000). Determination of glucosamine in nutritional supplements by reversed-phase ion-pairing HPLC. J. Liq. Chromatogr. Related. Technol. 23(18), 2861–2871. DOI: 10.1081/JLC-100101238.
- Shao, Y., Alluri, R., Mummert, M., Koetter, U. & Lech, S. (2004). A stability-indicating HPLC method for the determination of glucosamine in pharmaceutical formulations. J. Pharm. Biomed. Anal. 35(3), 625–631. DOI: 10.1016/j.jpba.2004.01.021.
- Bertuzzi, D.L., Becher, T.B., Capreti, N.M., Amorim, J., Jurberg, I.D., Megiatto Jr, J.D. & Ornelas, C. (2018). General Protocol to Obtain D-Glucosamine from Biomass Residues: Shrimp Shells, Cicada Sloughs and Cockroaches. Global Chall. 2(11), 1–6. DOI: 10.1002/gch2.201800046.
- Novikov, V.Y. & Ivanov, A. (1997). Synthesis of D (+)-glucosamine hydrochloride. Russ. J. Appl. Chem., 70(9), 1467–1470.
- Smets, R. & Van Der Borght, M. (2021). Enhancing the specificity of chitin determinations through glucosamine analysis via ultra-performance LC-MS. Anal. Bioanal. Chem. 413, 3119–3130. DOI: 10.1007/s00216-021-03252-4.
- Putri, A.K., Kartosentono, S. & Sugijanto, N.E.N. (2019). Isolation of glucosamine hcl from scylla paramamosain and determination by HPLC. J. Teknol. 81(5), 1–8. DOI: 10.11113/jt.v81.13416.
- Islam, M., Masum, S., Rahman, M. & Shaikh, A. (2011). Preparation of glucosamine hydrochloride from indigenous shrimp processing waste. Bangladesh J. Sci. Ind. Res., 46(3), 375–378. DOI: 10.3329/bjsir.v46i3.9046.
- Akpuaka, M.U. & Esimai, B.G. (2021). Isolation and Characterization of Chitin and Chitosan from the Biomass of Nigerian Shrimp Shells and Conversion to Glucosamine. Int. J. Res. Sci. Eng. 2(7), 181–187. https://www.journals.grdpublications.com/index.php/ijprse/article/view/347.
- Padman, A.J., Henderson, J., Hodgson, S. & Rahman, P.K. (2014). Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol. Lett. 36, 2079–2084. DOI: 10.1007/s10529-014-1579-1.
- Chen, X., Liu, Y., Kerton, F. M. & Yan, N. (2015). Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. Rsc Adv. 5(26), 20073–20080. DOI: 10.1039/C5RA00382B.
- Telange, D.R., Bhagat, S.B., Patil, A.T., Umekar, M.J., Pethe, A.M., Raut, N.A. & Dave, V. S. (2019). Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J. Excip. Food Chem. 10(3), 65–81.
- Sun, X.-F., Sun, R., Fowler, P. & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. J. Agric. Food Chem. 53(4), 860–870. DOI: 10.1021/jf040456q.
- Yu, S., Zang, H., Chen, S., Jiang, Y., Yan, B. & Cheng, B. (2016). Efficient conversion of chitin biomass into 5-hydroxymethylfurfural over metal salts catalysts in dimethyl sulfoxide-water mixture under hydrothermal conditions. Polym. Degrad. Stab., 134, 105–114. DOI: 10.1016/j.polymdegradstab.2016.09.035.
- Sibi, G., Dhananjaya, K., Ravikumar, K., Mallesha, H., Venkatesha, R., Dwijendra, T., Bhusal, K., Gowda, N. & Gowda, K. (2013). Preparation of glucosamine hydrochloride from crustacean shell waste and it’s quantitation by RP-HPLC. Am. Eurasian. J. Sci. Res. 8(2), 63–67. DOI: 10.5829/idosi.aejsr.2013.8.2.7381.