References
- Ashfaq, M., Culas, R., Baig, I. A., Ali, A. & Imran, M.A. (2021). Socio-economic Impact of Groundwater Resource Use on the Livelihood of Farming Communities in Eastern Punjab, Pakistan. https://cdn.csu.edu.au/__data/assets/pdf_file/0006/3930180/ILWS-Report-156-Socio-economic-Impact-of-Groundwater-Resource-Use-on-the-Livelihood-of-Farming-Communities-in-Eastern-Punjab,-Pakistan.pdf
- Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G. & Mariñas, B.J. (2008). Mayes, A.M.J.N. Science and technology for water purification in the coming decades. Nature 452, 301–310. DOI: 10.1038/nature06599.
- Huppert, H.E. & Sparks, R.S.J. (2006). Extreme natural hazards: population growth, globalization and environmental change Phil. Trans. R. Soc. A. 3641875–1888. DOI: 10.1098/rsta.2006.1803.
- Babel, S. & Kurniawan, T.K. (2004). Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, 951–967. DOI: 10.1016/j. chemosphere.2003.10.001.
- Sabri, A.W., Rasheed, K.A. & Kassim, T.I. (1993). Heavy metals in the water, suspended solids and sediment of the river Tigris impoundment at Samarra. Water Res. 27, 1099–1103. DOI: 10.1016/0043-1354(93)90075-S.
- Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol Environ Saf, 15, 211,111887. DOI: 10.1016/j.ecoenv.2020.111887.
- Ene, A., Popescu, I.V. & Stihi, C. (2009). Applications of proton induced X-ray emission technique in materials and environmental science. Mater. Sci. 20, 35–39.
- Jangid, S. & Shringi, S.K. (2013). Observations on the Effect of Copper on Growth Performance, Dry Matter Production and Photosynthetic Pigments of Ludwigia Perennis L. Nature Environ. Poll. Tech. 12(1), 171. https://neptjournal.com/upload-images/NL-41-31-31.pdf
- Jennings, S. & Polunin, N.V.C. (1996). Effects of Fishing Effort and Catch Rate Upon the Structure and Biomass of Fijian Reef Fish Communities. J. Appl. Ecol. 33, 2, 1996, 400–12. DOI: 10.2307/2404761.
- Marcus, Y. (2019). Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification. Processes 7, 156. DOI: 10.3390/pr7030156
- Tokunaga, S., & Hakuta, T.J.C. (2002). Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemospehere. 46, 31–38. DOI: 10.1016/S0045-6535(01)00094-7.
- Makino, T., Takano, H., Kamiya, T., Itou, T., Sekiya, N., Inahara, M. & Sakurai, Y.J.C. (2008). Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemospe-here 70, 1035–1043. DOI: 10.1016/j.chemosphere.2007.07.080.
- Wang, S-H., Yang, J., Liu, S-M., Xu, Z-W., Lu, X-C., Wang, B., Wang, H. & Bai K-C. (2011). Environmental effects of heavy metal elements release in Yangshanchong tailing pool, Shizishan, Tongling, Anhui Province. Geolog. J. Chinese Univ., 17(1), 93–100. https://geology.nju.edu.cn/EN/Y2011/V17/I1/93
- Davis, T.A., Volesky, B. & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37, 4311–4330. DOI: 10.1016/S0043-1354(03)00293-8.
- Hseu, Z-Y., Chen, Z-S., Tsai, Ch-Ch., Tsui, Ch-Ch., Cheng, S-F., Liu, Ch-L. & Lin, H-T. (2002). Digestion Methods for Total Heavy Metals in Sediments and Soils. Water Air. & Soil Pollut. 141, 189–205 DOI: 10.1023/A:1021302405128
- Sarma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4(2), 118–138. DOI: 10.3923/jest.2011.118.138.
- Khan, I., Ibrar, A., Abbas, N., & Saeed, A. (2014). Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multi-farious applications. Eur. J. Med. Chem. 9(76), 193–244. DOI: 10.1016/j.ejmech.2014.02.005.
- Khan, I., Ali, M., Aftab, M., Shakir, S., Qayyum, S., Haleem, K.S. & Tauseef, I. (2019). Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ. Monit. Assess. 191, 1–15. DOI: 10.1007/s10661-019-7781-9.
- Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M.U., Haleem, K.S. & Touseef, I. (2019). Mycore-mediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environ. Monit. Assess, 191, 1–11. DOI: 10.1007/s10661-019-7769-5.
- Wilson, E.B., Decius, J.C. & Cross, P.C. (1980). Molecular vibrations: the theory of infrared and Raman vibrational spectra; Courier Corporation:
- Kaminskyj, S., Jilkine, K., Szeghalmi, A. & Gough, K. (2008). High spatial resolution analysis of fungal cell biochemistry – bridging the analytical gap using synchrotron FTIR spectromicroscopy, FEMS Microbiol. Letters, 284(1), 1–8. DOI: 10.1111/j.1574-6968.2008.01162.x.
- Zameer, M., Tahir, U., Khalid, S., Zahra, N., Sarwar, A., Aziz, T., Saidal, A., Alhomrani, M.S., Alamri. A., Dablool, A.S., Sameeh, M.Y., Mohamed., A.A. & Alharbi, A. (2023). Isolation and characterization of indigenous bacterial assemblage for biodegradation of persistent herbicides in the soil. Acta Biochim. Pol. 31, 70(2), 325–334. DOI: 10.18388/abp.2020_6563.
- Khan, I., Aftab, M., Tauseef, I. & Syed, K. (2018). Isolation, phenotypic and genotypic characterization of metallotolerant fungal isolates from industrial soil. Arch Clin Microbiol. EuroSciCon Conference on Microbiology & Virology. June 21-22, 2018 Paris, France.
- Ahmad, B., Yousafzai, A.M., Maria, H., Khan, A.A., Aziz, T., Alharbi, M., Alsahammari, A. & Alasmari, A.F. (2023). Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations 10, 182. DOI: 10.3390/separations10030182.
- Mingorance, M.D., Valdés, B. & Oliva, S.R. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environ. Int., 33(4), 514–520. DOI: 10.1016/j.envint.2007.01.005.
- Su, Ch., Jiang, L.Q. & Zhang, W.J. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. 3, 24. Environ. Skeptics Critics, 3(2), 24–38. http://www.iaees.org/publications/journals/environsc/articles/2014-3%282%29/a-review-on-heavy-metal-contamination-in-the-soil-worldwide.pdf
- Romanelli, A.M., Sutton, D.A., Thompson, E.H., Rinaldi, M.G. & Wickes, B.L. (2010). Sequence-based identification of filamentous basidiomycetous fungi from clinical specimens: a cautionary note. J. Clin. Microbiol., 48(3), 741–752. DOI: 10.1128/JCM.01948-09.
- Yao, Z., Li, J., Xie, H. & Yu, C. (2016). Review on the remediation technologies of POPs. Proc. Enviorn. Sci. 16, 722–729. DOI: 10.1016/j.proenv.2012.10.099.
- Han, D., Wu, X., Li, R., Tang, X., Xiao, S. & Scholz, M. (2021). Critical Review of Electro-kinetic Remediation of Contaminated Soils and Sediments: Mechanisms, Performances and Technologies. Water Air. Soil. Pollut. 232, 335. DOI: 10.1007/s11270-021-05182-4.
- Khan, A.G. (2001). Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int., 26(5–6), 417–423. DOI: 10.1016/s0160-4120(01)00022-8.
- Anand, P., Isar, J., Saran, S. & Saxena, R.K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresour Technol. 97(8), 1018–1025. DOI: 10.1016/j.biortech.2005.04.046.
- Gadd, G.M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11(3), 271–279. DOI: 10.1016/s0958-1669(00)00095-1.
- Baldrian, P. & Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 2; 206(1), 69–74. DOI: 10.1111/j.1574-6968.2002.tb10988.x.
- Babich, H., & Stotzky, G. (1985). Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ. Res., 36(1), 111–137. DOI: 10.1016/0013-9351(85)90011-8.
- Ren, W-X., Li, P-J,. Zheng, L., Fan, S-X., & Verhozina, V.A. (2009). Effects of dissolved low molecular weight organic acids on oxidation of ferrous iron by Acidithiobacillus ferrooxidans. J. Hazard. Mater. 15, 162(1),17–22. DOI: 10.1016/j. jhazmat.2008.05.005.
- Valix, M., Usai, F. & Malik, R.J. (2001). Fungal bioleaching of low grade laterite ores. Minerals Engineering, 14, 197–203. DOI: 10.1016/S0892-6875(00)00175-8.
- Massaccesi, G., Romero, M.C., Cazau, M.C. & Bucsinszky, A.M. (2002). Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J. Microbiol. Biotechnol. 18, 817–820. DOI: 10.1023/A:1021282718440.
- Bai, R.S. & Abraham, T.E. (2002). Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans.Water Res., 36, 1224–1236. DOI: 10.1016/S0043-1354(01)00330-X.
- Zhou, D., Zhang, L. & Guo, S. (2005). Mechanisms of lead biosorption on cellulose/chitin beads. 39, 3755–3762. DOI: 10.1016/j.watres.2005.06.033.
- Yee, N., Benning, L.G., Phoenix, V.R. & Ferris, F.G. (2004). Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 1, 38(3), 775–782. DOI: 10.1021/es0346680.
- Kostova, I. (2023). The Role of Complexes of Biogenic Metals in Living Organisms. Inorganics, 11, 56. DOI: 10.3390/inorganics11020056.
- Peña-Castro, J.M., Martínez-Jerónimo, F., Esparza-García, F. & Cañizares-Villanueva, R.O. (2004). Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57(11), 1629–1636. DOI: 10.1016/j.chemosphere.2004.06.041.
- Damodaran, D., Balakrishnan, R.M. & Shetty, V.K. (2013). The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed. Res. Int. 2013, 149120. DOI: 10.1155/2013/149120.
- Arifeen, M.Z.U., Aziz, T., Nawab, S. & Nabi, G. (2015). Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition. American-Eurasian J. Agric. & Environ. Sci., 15(6), 1155–1162. DOI: 10.5829/idosi.aejaes.2015.15.6.94212.
- Lacerda, J.W.F., Siqueira, K.A., Vasconcelos, L.G., Bellete, B.S., Dall’Oglio, E.L., Sousa Junior, P.T., Faraggi, T.M., Vieira, L.C.C., Soares, M.A. & Sampaio, O.M. (2021). Metabolomic Analysis of Combretum lanceolatum Plants Interaction with Diaporthe phaseolorum and Trichoderma spirale Endophytic Fungi through 1 H-NMR. Chem. Biodivers. 18(10),e2100350. ccc
- Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Khan, A.A., Sameeh., M.Y., Haiying, C. & Lin, L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conv. Bioref. DOI: 10.1007/s13399-023-04283-w.
- Ullah, N., Mujaddad-ur-Rehman, M., Sarwar, A., Naddem, M., Nelofer, R., Irfan, M., Idrees, M., Ali, U., Naz, S. & Aziz. T., (2023). Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST-7 using tannery waste in submerged fermentation. Biomass Conv. Bioref. DOI: 10.1007/s13399-023-04498-x.
- Ullah, N., Rehman, M.U., Sarwar, A., Nadeem, M., Nelofer, R., Shakir, H.A., Irfan, M., Idrees, M., Naz, S., Nabi, G., Shah, S, Aziz, T., Metab, A., Alshammari A. & Alqahtani, F. (2022). Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation 8, 628. DOI: 10.3390/fermentation8110628.
- Hadi, F. & Aziz, T. (2015). A Mini Review on Lead (Pb) Toxicity in Plants. J. Biol. Life Sci., 6(2), 91–101. DOI: 10.5296/jbls.v6i2.7152.
- Naveed, M., Makhdoom, S.I., Rehman, S.U., Aziz, T., Bashir, F., Ali, U., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Biosynthesis and Mathematical Interpretation of Zero-Valent Iron NPs Using Nigella sativa Seed Tincture for Indemnification of Carcinogenic Metals Present in Industrial Effluents. Molecules 28, 3299. DOI: 10.3390/molecules28083299.