Have a personal or library account? Click to login
Synthesis of nanoscale zero-valent iron doped carbonized zeolitic imidazolate framework-8 for methylene blue removal in water Cover

Synthesis of nanoscale zero-valent iron doped carbonized zeolitic imidazolate framework-8 for methylene blue removal in water

Open Access
|Mar 2023

References

  1. Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 177, 70–80. DOI: 10.1016/j.jhazmat.2009.12.047.20044207
  2. Fadillah, G., Saleh, T.A., Wahyuningsih, S., Ninda Karlina Putri, E. & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J., 378, 122140. DOI: 10.1016/j.cej.2019.122140.
  3. Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., Tsang, D.C.W., Ok, Y.S. & Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater., 384, 121286. DOI: 10.1016/j.jhazmat.2019.121286.31586920
  4. Salama, R.S., El-Sayed, E.-S.M., El-Bahy, S.M. & Awad, F.S. (2021). Silver nanoparticles supported on UIO-66 (Zr): As an efficient and recyclable heterogeneous catalyst and efficient adsorbent for removal of indigo carmine. Colloid. Surface. A, 626, 127089. DOI: 10.1016/j.colsurfa.2021.127089.
  5. Alshorifi, F.T., Ali, S.L. & Salama, R.S. (2022). Promotional synergistic effect of Cs–Au NPs on the performance of Cs–Au/MgFe2O4 catalysts in catalysis 3,4-dihydropyrimidin-2(1h)-ones and degradation of RhB dye. J. Inorg. Organomet. P., 32, 3765–3776. DOI: 10.1007/s10904-022-02389-8.
  6. Alshorifi, F.T., Alswat, A.A. & Salama, R.S. (2022). Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B. Heliyon, 8, 6. DOI: 10.1016/j.heliyon.2022.e09652.918988935706958
  7. Ghosh, D. & Bhattacharyya, K.G. (2002). Adsorption of methylene blue on kaolinite. Appl. Clay Sci., 20, 295–300. DOI: 10.1016/S0169-1317(01)00081-3.
  8. El-Hakam, S.A., Alshorifi, F.T., Salama, R.S., Gamal, S., El-Yazeed, W.S.A., Ibrahim, A.A. & Ahmed, A.I. (2022). Application of nanostructured mesoporous silica/bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mater. Res. Technol., 18, 1963–1976. DOI: 10.1016/j.jmrt.2022.03.067.
  9. Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A.R., Chen, H., Hu, X. & Gao, B. (2021). Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresour. Technol., 337, 125432. DOI: 10.1016/j. biortech.2021.125432.
  10. Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D.O. & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Mate. Today Chem., 16, 100233. DOI: 10.1016/j.mtchem.2019.100233.
  11. Güleç, F., Williams, O., Kostas, E.T., Samson, A., Stevens, L.A. & Lester, E. (2022). A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel, 330, 125428. DOI: 10.1016/j.fuel.2022.125428.
  12. Reyes-Miranda, J., Garcia-Murillo, A., Garrido-Hernández, A.& Carrillo-Romo, F.d.J. (2021). Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity. Mater. Lett., 292, 129589. DOI: 10.1016/j.matlet.2021.129589.
  13. Zhang, Z., Xu, L., Liu, Y., Feng, R., Zou, T., Zhang, Y., Kang, Y.& Zhou, P. (2021). Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Micropor. Mesopor. Mat., 315, 110904. DOI: 10.1016/j.micromeso.2021.110904.
  14. Dai, K., Zhao, G., Kou, J., Wang, Z., Zhang, J., Wu, J., Yang, P., Li, M., Tang, C., Zhuang, W.& Ying, H. (2021). Magnetic mesoporous sodium citrate modified lignin for improved adsorption of calcium ions and methylene blue from aqueous solution. J. Environ. Chem. Eng., 9, 105180. DOI: 10.1016/j.jece.2021.105180.
  15. Ajeel, S.J., Beddai, A.A. & Almohaisen, A.M.N. (2021). Preparation of alginate/graphene oxide composite for methylene blue removal. Mater. Today: Proc., DOI: 10.1016/j. matpr.2021.05.331.
  16. Sharma, P., Olufemi, A.F. & Qanungo, K. (2021). Development of green geo-adsorbent pellets from low fire clay for possible use in methylene blue removal in aquaculture. Mater. Today: Proc., DOI: 10.1016/j.matpr.2021.07.343.
  17. Chandarana, H., Senthil Kumar, P., Seenuvasan, M. & Anil Kumar, M. (2021). Kinetics, equilibrium and thermodynamic investigations of methylene blue dye removal using casuarina equisetifolia pines. Chemosphere, 285, 131480. DOI: 10.1016/j. chemosphere.2021.131480.
  18. Ibrahim, A.A., Salama, R.S., El-Hakam, S.A., Khder, A.S. & Ahmed, A.I. (2021). Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloid. Surface. A, 616, 126361. DOI: 10.1016/j.colsurfa.2021.126361.
  19. Pasinszki, T., Krebsz, M., Chand, D., Kótai, L., Homonnay, Z., Sajó, I.E. & Váczi, T. (2020). Carbon microspheres decorated with iron sulfide nanoparticles for mercury(II) removal from water. J. Mater. Sci., 55, 1425–1435. DOI: 10.1007/s10853-019-04032-3.
  20. Wang, G., Gao, G., Yang, S., Wang, Z., Jin, P. & Wei, J. (2021). Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal. Micropor. Mesopor. Mat., 310, 110623. DOI: 10.1016/j.micromeso.2020.110623.
  21. Krebsz, M., Pasinszki, T., Tung, T.T., Nine, M.J. & Losic, D. (2021). Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere, 263, 127790. DOI: 10.1016/j.chemosphere.2020.127790.32854003
  22. Pasinszki, T., Krebsz, M., Kótai, L., Sajó, I.E., Homonnay, Z., Kuzmann, E., Kiss, L.F., Váczi, T. & Kovács, I. (2015). Nanofurry magnetic carbon microspheres for separation processes and catalysis: Synthesis, phase composition, and properties. J. Mater. Sci., 50, 7353–7363. DOI: 10.1007/s10853-015-9292-6.
  23. Chen, S., Belver, C., Li, H., Ren, L.Y., Liu, Y.D., Bedia, J., Gao, G.L. & Guan, J. (2018). Effects of pH value and calcium hardness on the removal of 1,1,1-trichloroethane by immobilized nanoscale zero-valent iron on silica based supports. Chemosphere, 211, 102–111. DOI: 10.1016/j.chemo-sphere.2018.07.127.
  24. Sawafta, R. & Shahwan, T. (2019). A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions. J. Mol. Liq., 273, 274–281. DOI: 10.1016/j.molliq.2018.10.010.
  25. Yang, B., Tian, Z., Zhang, L., Guo, Y.& Yan, S. (2015). Enhanced heterogeneous fenton degradation of methylene blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide. J. Water Proc. Eng., 5, 101–111. DOI: 10.1016/j.jwpe.2015.01.006.
  26. Zhang, J., Zhang, T., Liang, X., Wang, Y., Shi, Y., Guan, W., Liu, D., Ma, X., Pang, J., Xie, X., Hong, K. & Wu, Z. (2020). Efficient photocatalysis of Cr(VI) and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride. Appl. Clay Sci., 198, 105817. DOI: 10.1016/j.clay.2020.105817.
  27. Zhang, N., Eric, M., Zhang, C., Zhang, J., Feng, K., Li, Y. & Wang, S. (2021). ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(VI): A mechanistic investigation. J. Hazard. Mater., 414, 125507. DOI: 10.1016/j.jhazmat.2021.125507.34030402
  28. Xu, J., Wang, X., Pan, F., Qin, Y., Xia, J., Li, J. & Wu, F. (2018). Synthesis of the mesoporous carbon-nano-zero-valent iron composite and activation of sulfite for removal of organic pollutants. Chem. Eng. J., 353, 542–549. DOI: 10.1016/j. cej.2018.07.030.
  29. Chen, S., Li, Z., Belver, C., Gao, G., Guan, J., Guo, Y., Li, H., Ma, J., Bedia, J. & Wójtowicz, P. (2020). Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water. J. Environ. Manage., 264, 110480. DOI: 10.1016/j.jenvman.2020.110480.32250905
  30. Shi, J., Wang, J., Wang, W., Teng, W. & Zhang, W.-x. (2019). Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). J. Environ. Sci., 81, 28–33. DOI: 10.1016/j.jes.2019.02.010.30975326
  31. Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A.B., Filip, J., Zbořil, R., Deligiannakis, Y. & Karakassides, M.A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647. DOI: 10.1016/j. carbon.2015.05.081.
  32. Gadipelli, S. & Guo, Z.X. (2015). Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield – A case for superior CO2 capture. Chem. Sus. Chem., 8, 2123–2132. DOI: 10.1002/cssc.201403402.451509725917928
  33. Aijaz, A., Fujiwara, N. & Xu, Q. (2014). From metal– organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc., 136, 6790–6793. DOI: 10.1021/ja5003907.24786634
  34. Sann, E.E., Pan, Y., Gao, Z., Zhan, S. & Xia, F. (2018). Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol., 206, 186–191. DOI: 10.1016/j. seppur.2018.04.027.
  35. Pérez-Miana, M., Reséndiz-Ordóñez, J.U. & Coronas, J. (2021). Solventless synthesis of ZIF-l and ZIF-8 with hydraulic press and high temperature. Micropor. Mesopor. Mater., 328, 111487. DOI: 10.1016/j.micromeso.2021.111487.
  36. Qu, Y., Qin, L. & Liu, X. (2023). Carbonized ZIF-8/chitosan biomass imprinted hybrid carbon aerogel for phenol selective removal from wastewater. Carbohyd. Polym., 300, 120268. DOI: 10.1016/j.carbpol.2022.120268.36372491
  37. Jiang, X.-F., Wang, X.-B., Dai, P., Li, X., Weng, Q., Wang, X., Tang, D.-M., Tang, J., Bando, Y. & Golberg, D. (2015). High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, 16, 81–90. DOI: 10.1016/j. nanoen.2015.06.008.
  38. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P. & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc., 195, 145–154. DOI: 10.1016/j.elspec.2014.07.003.
  39. Chen, S., Bedia, J., Li, H., Ren, L.Y., Naluswata, F. & Belver, C. (2018). Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons. Chem. Eng. J., 343, 619–628. DOI: 10.1016/j. cej.2018.03.011.
  40. Zhang, X., Lin, D. & Chen, W. (2015). Nitrogen-doped porous carbon prepared from a liquid carbon precursor for CO2 adsorption. RSC Adv., 5, 45136–45143. DOI: 10.1039/c5ra08014b.
  41. Chen, X., Lu, K., Lin, D., Li, Y., Yin, S., Zhang, Z., Tang, M. & Chen, G. (2021). Hierarchical porous tubular biochar based sensor for detection of trace lead (II). Electroanalysis, 33, 473–482. DOI: 10.1002/elan.202060148.
  42. Lu, K.C., Wang, J.K., Lin, D.H., Chen, X., Yin, S.Y. & Chen, G.S. (2020). Construction of a novel electrochemical biosensor based on a mesoporous silica/oriented graphene oxide planar electrode for detecting hydrogen peroxide. Anal. Methods, 12, 2661–2667. DOI: 10.1039/d0ay00430h.32930296
  43. Yin, S., Wang, J., Li, Y., Wu, T., Song, L., Zhu, Y., Chen, Y., Cheng, K., Zhang, J., Ma, X., Lin,D. & Chen, G. (2021). Macroscopically oriented magnetic core-regularized nanomaterials for glucose biosensors assisted by self-sacrificial label. Electroanalysis, 33, 2216–2225. DOI: 10.1002/elan.202100231.
  44. Lin, D., Zhang, X., Cui, X. & Chen, W. (2014). Highly porous carbons with superior performance for CO2 capture through hydrogen-bonding interactions. RSC Adv., 4, 27414–27421. DOI: 10.1039/c4ra04545a.
  45. Luan, Tran, B., Chin, H.-Y., Chang, B.K. & Chiang, A.S.T. (2019). Dye adsorption in ZIF-8: The importance of external surface area. Micropor. Mesopor. Mater., 277, 149–153. DOI: 10.1016/j.micromeso.2018.10.027.
  46. Yao, J., He, M., Wang, K., Chen, R., Zhong, Z. & Wang, H. (2013). High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. Cryst. Eng. Comm., 15, 3601–3606. DOI: 10.1039/C3CE27093A.
  47. Guan, X., Sun, Y., Qin, H., Li, J., Lo, I.M.C., He, D. & Dong, H. (2015). The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res., 75, 224–248. DOI: 10.1016/j.watres.2015.02.034.25770444
  48. Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G. & Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J., 307, 264–272. DOI: 10.1016/j.cej.2016.08.089.
Language: English
Page range: 12 - 19
Published on: Mar 29, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Shuai Chen, Lemeng Qiao, Xuejiao Feng, Yufu Huang, Guilan Gao, Jie Guan, Donghai Lin, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution 4.0 License.