Have a personal or library account? Click to login

Reduction and Biosorption of Cr(VI) from Aqueous Solutions by Acid-Modified Guava Seeds: Kinetic and Equilibrium Studies

Open Access
|Nov 2020

References

  1. 1. Prabhakaran, S.K., Vijayaraghavan, K. & Balasubramanian, R. (2009). Removal of Cr (VI) ions by spent tea and coffee dusts: reduction to Cr (III) and biosorption. Ind. Eng. Chem. Res. 48(4), 2113–2117. DOI: 10.1021/ie801380h.
  2. 2. Mathialagan, T. & Viraraghavan, T. (2003). Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol., 38(1), 57–76. DOI: 10.1081/SS-120016698.
  3. 3. Navarro, A.E., Ramos, K.P., Agapito, R. & Cuizano, N.A. (2006). Propiedades ácido-básicas de Lentinus edodes y cinética de biosorción de Cadmio (II). Rev. Lat. Rec Nat., 2(2), 47–54. (In spanish) Retrieved January 20, 2020 from https://www.itson.mx/publicaciones/rlrn/Documents/v2-n2-1-propiedades-%C3%A1cido-b%C3%A1sicas-de-lentinus-edodes.pdf.
  4. 4. Dehghani, M.H., Sanaei, D., Ali, I. & Bhatnagar, A. (2016). Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679. DOI: 10.1016/j.jhazmat.2007.07.033.
  5. 5. Abdel Hameed, M.S. (2006). Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. Afr. J. Biotech. 5(19). DOI: 10.5897/AJB2006.000-5070.
  6. 6. Mehta, S.K. & Gaur, J.P. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotech. 25(3), 113–152. DOI: 10.1080/07388550500248571.
  7. 7. Crist, R.H., Oberholser, K., McGarrity, J., Crist, D.R., Johnson, J.K. & Brittsan, J.M. (1992). Interaction of metals and protons with algae. 3. Marine algae, with emphasis on lead and aluminum. Env. Sci. Technol. 26(3), 496–502. DOI: 10.1021/es00027a007.
  8. 8. Fan, X.D., & Zhang, X.K. (2015). Adsorption of heavy metals by adsorbents from food waste residue. J. Residuals Sci. Technol. 12, 155–158. DOI: 10.12783/issn.1544-8053/12/s1/22.
  9. 9. Bayuo, J., Pelig-Ba, K.B. & Abukari, M.A. (2019). Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Appl. Water Sci. 9(4), 107. DOI: 10.1007/s13201-019-0987-8.
  10. 10. Mangwandi, C., Kurniawan, T.A. & Albadarin, A.B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chem. Eng. Res. Des. 156, 251–262. DOI: 10.1016/j.cherd.2020.01.034
  11. 11. Daneshvar, N., Salari, D. & Aber, S. (2002). Chromium adsorption and Cr (VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. Hazard. Mat. 94(1), 49–61. DOI: 10.1016/S0304-3894(02)00054-7.
  12. 12. Jawad, A. & Karim, S.K.A. (2020). Cr (VI) ions removal from aqueous solutions using carrot residues as an adsorbent. Science Letters, 13(2), 30–36. DOI: 10.24191/sl.v13i2.7871.
  13. 13. Das, S.H., Saha, J., Saha, A., Rao, A.K., Chakraborty, B. & Dey, S. (2019). Adsorption study of chromium (VI) by dried biomass of tea leaves. J. Indian Chem. Soc. 96(4), 447–454. Retrieved June 15, 2020 from http://www.indianchemicalsociety.com/portal/uploads/journal/2019_04_6_Extended_1556592447.pdf.
  14. 14. Aggarwal, R. & Arora, G. (2020). Assessment of biosorbents for chromium removal from aqueous media. Materials Today: Proceedings. In press. DOI: 10.1016/j.matpr.2020.04.837.
  15. 15. Olguin, M.T., Lopez-González, H. & Serrano-Gómez, J. (2013). Hexavalent chromium removal from aqueous solutions by Fe-modified peanut husk. Water Air Soil Pollut. 224(9), 1654. DOI: 10.1007/s11270-013-1654-6.
  16. 16. Parlayici, Ş. & Pehlivan, E. (2015). Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium (VI) from aqueous solutions. Environ. Monit. Assess. 187(12), 763. DOI: 10.1007/s10661-015-4984-6.26581609
  17. 17. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y.B. & Naidu, R. (2016). Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents. Water Air Soil Pollut. 227(2), 62. DOI: 10.1007/s11270-016-2760-z.
  18. 18. Wassie, A.B., & Srivastava, V.C. (2016). Teff straw characterization and utilization for chromium removal from wastewater: Kinetics, isotherm and thermodynamic modelling. J. Env. Chem. Eng. 4(1), 1117–1125. DOI: 10.1016/j.jece.2016.01.019.
  19. 19. Ntuli, T.D. & Pakade, V.E. (2020). Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption–reduction mechanism: adsorption isotherms, kinetics and thermodynamics. Chem. Eng. Commun. 207(3), 279–294. DOI: 10.1080/00986445.2019.1581619.
  20. 20. Alfaro-Cuevas-Villanueva, R., Hidalgo-Vázquez, A.R., Cortés Penagos, C.D.J., & Cortés-Martínez, R. (2014). Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci. World J. 2014, DOI: 10.1155/2014/647512.392194724587740
  21. 21. Pinzón-Bedoya, M.L. & Vera Villamizar, L.E. (2009). Kinetic modeling biosorption of Cr (III) using orange shell. Dyna. 76(160), 95–106. (In spanish) Retrieved february 20, 2020 from http://www.scielo.org.co/scielo.php?pid=S0012-73532009000400009&script=sci_arttext&tlng=en.
  22. 22. Netzahuatl-Muñoz, A.R., del Carmen Cristiani-Urbina, M. & Cristiani-Urbina, E. (2015). Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9). DOI: 10.1371/journal.pone.0137086456417926352933
  23. 23. Cao, W., Wang, Z., Ao, H. & Yuan, B. (2018). Removal of Cr (VI) by corn stalk based anion exchanger: the extent and rate of Cr (VI) reduction as side reaction. Colloids Surf. A Physicochem. Eng. Asp. 539, 424–432. DOI: 10.1016/j.colsurfa.2017.12.049.
  24. 24. Park, D., Yun, Y.S. & Park, J.M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI: 10.1016/j.chemosphere.2005.02.020.16054904
  25. 25. da Rocha Ferreira, G.L., Vendruscolo, F., & Antoniosi Filho, N.R. (2019). Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5(3), e01450. DOI: 10.1016/j.heliyon.2019.e01450.644183230976708
  26. 26. Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., & Pichette, A. (2012). Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym. Degrad. Stabil. 97(7), 1197–1214. DOI: 10.1016/j.polymdegradstab.2012.03.022
  27. 27. Yun, Y.S. (2004). Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J. Microbiol Biotechn. 14(1), 29–34. Retrieved march 20, 2020 from http://www.jmb.or.kr/journal/download.php?Filedir=../submission/Journal/014/&num=1822.
  28. 28. Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., & Ala’a, H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind. Crop. Prod. 44, 18–24. DOI: 10.1016/j.indcrop.2012.10.017.
  29. 29. Wahab, M.A., Jellali, S. & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101(14), 5070–5075. DOI: 10.1016/j.biortech.2010.01.121.20163954
  30. 30. Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L. & Thain, S.C. (2010). FT-IR as an alternative method for measuring chemical properties during composting. Bioresour. Technol. 101(14), 5431–5436. DOI: 10.1016/j.biortech.2010.02.033.20335024
  31. 31. Vázquez-Guerrero, A., Alfaro-Cuevas-Villanueva, R., Rutiaga-Quiñones, J.G. & Cortés-Martínez, R. (2016). Fluoride removal by aluminum-modified pine sawdust: effect of competitive ions. Ecol. Eng. 94, 365–379. DOI: 10.1016/j.ecoleng.2016.05.070.
  32. 32. Ayoob, S., Gupta, A.K., Bhakat, P.B., & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 140(1–3), 6–14. DOI: 10.1016/j.cej.2007.08.029.
  33. 33. Marín, Rangel, V.M., Cortés, Martínez, R., Cuevas Villanueva, R.A., Garnica, Romo, M.G. & Martínez, Flores, H.E. (2012). As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia swingle) residues. J. Food Sci. 77(1), T10-T14. DOI: 10.1111/j.1750-3841.2011.02466.x22122309
  34. 34. Hon, D.N. & Shiraishi, N. (2000). Wood Cellulosic Chemistry New York, USA: CRC press.
  35. 35. Fiol, N., Escudero, C. & Villaescusa, I. (2008). Chromium sorption and Cr (VI) reduction to Cr (III) by grape stalks and yohimbe bark. Bioresour. Technol. 99(11), 5030–5036. DOI: 10.1016/j.biortech.2007.09.007.17945493
  36. 36. Peng, H., Salmén, L., Stevanic, J. S., & Lu, J. (2019). Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta. 250(1), 163–171. DOI: 10.1007/s00425-019-03158-730953149
  37. 37. Coates, J. (2000). Chapter in Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), New Jersey, USA: John Wiley & Sons.
  38. 38. Suksabye, P., Thiravetyan, P., Nakbanpote, W. & Chayabutra, S. (2007). Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mat. 141(3), 637–644. DOI: 10.1016/j.jhazmat.2006.07.018.16919872
  39. 39. Sánchez-Sánchez, H.A., Cortés-Martínez, R. & Alfaro-Cuevas-Villanueva, R. (2013). Fluoride removal from aqueous solutions by mechanically modified guava seeds. Int. J. Sci.: Basic Appl. Res. 11, 159–172. Retrieved june 20, 2020 from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/1326/1204.
  40. 40. Puigdomenech, Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (version 18), Inorganic Chemistry Department, Royal Institute of Technology, Stockholm, Sweden 2010. Retrieved December 19, 2019 from https://www.kth.se/che/medusa/downloads-1.386254.
  41. 41. Bellú, S., Sala, L., González, J., García, S., Frascaroli, M., Blanes, P., García, J., Sales-Peregrin, J., Atria, A., Ferrion, J., Harada, M., Cong, C. & Niwa, Y. (2010). Thermodynamic and dynamic of chromium biosorption by pectic and lignocellulocic biowastes. J. Wat Res. Prot. 2(10), 888. DOI: 10.4236/jwarp.2010.210106.
  42. 42. Park, D., Yun, Y. S. & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI: 10.1016/j.chemosphere.2005.02.02016054904
  43. 43. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. E. 15(1), 86–102. DOI: 10.1007/s12257-009-0199-4.
  44. 44. Miretzky, P. & Cirelli, A.F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mat. 180(1–3), 1–19. DOI: 10.1016/j.jhazmat.2010.04.060.20451320
  45. 45. Zheng, Y.M., Liu, T., Jiang, J., Yang, L., Fan, Y., Wee, A.T. & Chen, J.P. (2011). Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. J. Colloid Interf. Sci. 356(2), 74–748. DOI: 10.1016/j.jcis.2010.12.070.21310422
  46. 46. Lagrergen, S. (1898). Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39. DOI: 10.1007/BF01501332
  47. 47. Ho, Y.S., McKay, G., Wase, D.A.J. & Forster, C.F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18(7), 639–650. DOI: 10.1260/0263617001493693
  48. 48. Low, M.J.D. (1960). Kinetics of chemisorption of gases on solids. Chem. Rev. 60(3), 267–312. DOI: 10.1021/cr60205a003.
  49. 49. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728–735. DOI: 10.1016/j.apsusc.2017.07.053.
  50. 50. Araújo, C.S., Almeida, I.L., Rezende, H.C., Marcionilio, S.M., Léon, J.J. & de Matos, T.N. (2018). Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137, 348–354. DOI: 10.1016/j.microc.2017.11.009.
  51. 51. Al-Homaidan, A.A., Al-Qahtani, H.S., Al-Ghanayem, A.A., Ameen, F. & Ibraheem, I.B. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J. Biol. Sci. 25(8), 1733–1738. DOI: 10.1016/j.sjbs.2018.07.011.630317430591793
  52. 52. Shouman, M.A., Fathy, N.A., Khedr, S.A., & Attia, A.A. (2013). Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Adv. Phys. Chem. Vol. 2013. DOI: 10.1155/2013/159712.
  53. 53. Khalifa, E.B., Rzig, B., Chakroun, R., Nouagui, H. & Hamrouni, B. (2019). Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometr. Intell Lab. 189, 18–26. DOI: 10.1016/j.chemolab.2019.03.014.
  54. 54. Mahmood-ul-Hassan, M., Suthor, V., Rafique, E. & Yasin, M. (2015). Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ. Monit. Assess. 187(2), 19. DOI: 10.1007/s10661-014-4258-8.25626568
Language: English
Page range: 36 - 47
Published on: Nov 26, 2020
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Marel Ortíz-Gutiérrez, Ruth Alfaro-Cuevas-Villanueva, Verónica Martínez-Miranda, Orlando Hernández-Cristóbal, Raúl Cortés-Martínez, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.