Have a personal or library account? Click to login
Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications Cover

Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications

Open Access
|Jan 2019

References

  1. 1. WHO Food Additives series no. 5 (1973). Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents.
  2. 2. Hsu, C.L., Chang, K.S. & Kuo, J.C. (2008). Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control, 19, 223-230. DOI: 10.1016/j.foodcont.2007.01.004.10.1016/j.foodcont.2007.01.004
  3. 3. Kanyong, P., Rawlinson, S. & Davis, J. (2016). A non- -enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J. Electroanalyt. Chem. 766, 147-151. DOI: https://doi.org/10.1016/j.jelechem.2016.02.006.10.1016/j.jelechem.2016.02.006
  4. 4. Law, B.A. (2010). Enzymes in dairy product manufacture. In Whitehurst R. J., Oort M. (Eds.), Enzymes in Food Technology, 92-93. Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication.
  5. 5. Saha, B.A., Ali, M.Y., Chakraborty, M., Islam, Z. & Hira, A.K. (2003). Study on the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nut., 2(1), 36-42. DOI: 10.3923/pjn.2003.36.42.10.3923/pjn.2003.36.42
  6. 6. Sooch, B.S., Kauldhar, B.S. & Puri, M. (2017). Catalases. Types, Structure, Applications and Future Outlook. In R.C. Ray, C.M. Rossel (Eds.), Microbial Enzyme Technology in Food Applications, 241-250. Boca Raton, CRC Press.10.1201/9781315368405-15
  7. 7. Loncar, N. & Fraaije, MW. (2015). Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol. 99(8), 3351-3357. DOI: 10.1007/s00253-015-6512-6.10.1007/s00253-015-6512-625761626
  8. 8. Choudhury A.K.R. (2014). Sustainable Textile Wet Processing: Applications of Enzymes, in Roadmap to Sustainable Textiles and Clothing. In S.S Muthu (Eds.), Eco-friendly Raw Materials, Technologies and Processing Methods, 217-219. Springer, ISBN 978-981-287-065-0. DOI: 10.1007/978-981-287-065-0.10.1007/978-981-287-065-0
  9. 9. Sarmiento, F., Peralta, R. & Blamey J.M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3, 1-15. DOI: 10.3389/fbioe.2015.00148.10.3389/fbioe.2015.00148461182326539430
  10. 10. Homaei, A.A., Sariri, R., Vianello, F. & Stevanato, R. (2013). Enzyme immobilization: an update. J. Chem. Biol. 6(4), 185-205. DOI: 10.1007/s12154-013-0102-9.10.1007/s12154-013-0102-9378720524432134
  11. 11. Dogac, Y.I., Cinar, M. & Teke, M. (2015). Improving of Catalase Stability Properties by Encapsulation in Alginate/ Fe3O4 Magnetic Composite Beads for Enzymatic Removal of H2O2. Prep. Biochem. Biotech. 45(2), 144-157. DOI: 10.1080/10826068.2014.907178.10.1080/10826068.2014.90717824679144
  12. 12. Rios, G.M., Beelleville, M.P. & Paolucci, D., et al. (2004). Progress in enzymatic membrane reactors - a review. J. Membrane Sci. 242(1-2), 189-196, DOI: https://doi.org/10.1016/j.memsci.2003.06.004.10.1016/j.memsci.2003.06.004
  13. 13. Franssen, M.C.R., Steunenberg, P., Scott, E.L., et al. (2013). Immobilized enzymes in biorenewables production. Chem. Soc. Rev. 42, 6491-6533. DOI: 10.1039/C3CS00004D.10.1039/C3CS00004
  14. 14. Murtinho, D., Lagoa, A.R. & Garcia, F.A.P., et al. (1998). Cellulose Derivatives Membranes as Supports for Immobilisation of Enzymes. Cellulose. 5(4), 299-308. DOI: 10.1023/A:1009255126274.10.1023/A:1009255126274
  15. 15. Lowry, O., Rosebrough, N., Farr, A. & Randall, R., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-270.10.1016/S0021-9258(19)52451-6
  16. 16. Safarik, I., Sabatkova, Z. & Safarikova, M. (2008). Hydrogen Peroxide Removal with Magnetically Responsive Saccharomyces cerevisiae Cells. J. Agric. Food Chem. 56, 7925-7928. DOI: 10.1021/jf801354a.10.1021/jf801354a
  17. 17. Farkye, NY. (2004). Cheese technology. Int. J. Dairy Technol. 5791-98.10.1111/j.1471-0307.2004.00146.x
  18. 18. Trusek-Holownia, A. (2003). Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate - water system catalyzed by thermolysin. J. Biotechnol. 102, 153-163. DOI: 10.1016/S0168-1656(03)00024-5.10.1016/S0168-1656(03)00024-5
  19. 19. Dogac, Y.I. & Teke, M. (2013) Immobilization of bovine catalase onto magnetic nanoparticles. Prepar. Biochem. Biotechnol. 43, 750-765. DOI:10.1080/10826068.2013.773340.10.1080/10826068.2013.77334023876136
  20. 20. Silva, L.C.C. (2015). Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk. Ciência Rural, 1-13. DOI: 10.1590/0103-8478cr20141013.10.1590/0103-8478cr20141013
  21. 21. Yildiz, H., Akyilmaz, E. & Dinckaya, E. (2004). Catalase Immobilization in Cellulose Acetate Beads and Determination of its Hydrogen Peroxide Decomposition Level by using a Catalase Biosensor. Artif. Cells Blood Substit. Immobil. Biotechnol. 32(3), 443-452. DOI: 10.1081/BIO-2000277507.10.1081/BIO-2000277507
  22. 22. Görenek, G., Akyilmaz, E. & Dinckaya, E. (2004). Immobilisation of Catalase by Entrapping in Alginate Beads and Catalase Biosensor Preparation for the Determination of Hydrogen Peroxide Decomposition. Art. Cells, Blood Subst. 32(3), 453-461. DOI: 10.1081/BIO-200027518.10.1081/BIO-200027518
  23. 23. Trusek-Holownia, A. & Noworyta, A. (2015). Catalase immobilized in capsules in microorganisms removal from drinking water, milk and beverages. Desalin. Water Treat. 55(10), 2721-27727. DOI: 10.1080/19443994.2014.939857.10.1080/19443994.2014.939857
  24. 24. Miłek, J., Kwiatkowska-Marks, S. & Wójcik, M. (2011). Immobilization of catalase from Aspergillus niger in calcium alginate gel. Chemik 65(4), 305-308.
  25. 25. Al-Mayah, A.M.R. (2012). Simulation of Enzyme Catalysis in Calcium Alginate Beads. Enz. Res. 459190, 1-13. DOI: 10.1155/2012/459190.10.1155/2012/459190
  26. 26. Noworyta, A. & Trusek-Holownia, A. (2004). Modeling of enzymatic conversion in the catalytic gel layer located on a membrane surface. Desalination 162, 1-3, 327-334. DOI: 10.1016/S0011-9164(04)00066-9.10.1016/S0011-9164(04)00066-9
  27. 27. Trusek-Holownia, A. & Noworyta, A. (2015). Efficient utilization of hydrogel preparations with encapsulated enzymes- a case study on catalase and hydrogen peroxide degradation. Biotechnol. Reports 6, 13-19.10.1016/j.btre.2014.12.012546625928626692
Language: English
Page range: 39 - 43
Published on: Jan 11, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Katarzyna Czyzewska, Anna Trusek, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.